Detection of microwave radiation by a ferromagnetic/normal metal heterostructure in the near field of an antenna

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The operation of a spintronic detector in the near field of an antenna emitting a microwave signal at a frequency of 10 GHz has been investigated. The feasibility of using a detector based on a Lu₃Fe₅O₁₂/Pt heterostructure, operating due to the inverse spin Hall effect, has been studied. A comparison was made between the experimentally measured output voltage of the detector and theoretical calculations of the power distribution of the electromagnetic field, performed using COMSOL Multiphysics. The sensitivity of the detector was determined, and the dependence of the output signal on the distance to the radiation source was measured. The obtained results confirm the feasibility of using spintronic heterostructures in wireless data and energy transmission systems. The prospects for using the detector in wireless communication and data transmission systems operating in the near field of an antenna, such as RFID (Radio Frequency Identification) and NFC (Near Field Communication), are considered.

Full Text

Restricted Access

About the authors

D. A. Volkov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute” (MPEI)

Author for correspondence.
Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, build. 1, Moscow, 111250

A. A. Matveev

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700

D. A. Gabrielyan

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute” (MPEI)

Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, build. 1, Moscow, 111250

A. R. Safin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute” (MPEI)

Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, build. 1, Moscow, 111250

M. S. Mikhailov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute” (MPEI)

Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, build. 1, Moscow, 111250

S. A. Nikitov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Saratov National Research State University named after N.G. Chernyshevsky

Email: d.a.volkov.work@gmail.com
Russian Federation, Mokhovaya Str., 11, Build. 7, Moscow, 125009; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700; Astrakhanskaya Str., 83, Saratov, 410012

References

  1. Locatelli N., Cros V., Grollier J. // Nature Mater. 2014. V. 13. № 1. P. 11.
  2. Shao Q., Li P., Liu L. et al. // IEEE Trans. 2021. V. MAG-57. № 7. Article No. 800439.
  3. Hикитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  4. Puebla J., Kim J., Kondou K., Otani Y. // Commun. Mater. 2020. V. 1. № 1. Article № 24.
  5. Hemour S. Zhao Y., Lorenz C.H.P. et al. // IEEE Trans. 2014. V. MAG-62. № 4. P. 965.
  6. Liu L., Li Y., Liu Y. et al. // Phys. Rev. B. 2020. V. 102. № 1. P. 014411.
  7. Sharma V., Saha J., Patnaik S., Kuanr B.K. // J. Magn. Magn. Mater. 2017. V. 439. P. 277.
  8. Jermain C.L., Paik H., Aradhya S.V. et al. // Appl. Phys. Lett. 2016. V. 109. № 19. P. 192408.
  9. Akhtar M.N., Yousaf M., Khan S.N. et al. // Ceramics Int. 2017. V. 43. № 18. P. 17032.
  10. Волков Д.А., Габриелян Д.А., Матвеев А.А. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 5. С. 348.
  11. Tserkovnyak Y., Brataas A., Bauer G.E. // Phys. Rev. Lett. 2002. V. 88. № 11. P. 117601.
  12. Tserkovnyak Y., Ochoa H. // Phys. Rev. B. 2017. V. 96. № 10. P. 100402.
  13. Zhu L., Ralph D.C., Buhrman R.A. // Phys. Rev. Lett. 2019. V. 123. № 5. P. 057203.
  14. Hикулин Ю.В., Хивинцев Ю.В., Селезнев М.Е. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 9. С. 676.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup.

Download (224KB)
3. Fig. 2. Dependences of the ISHE voltage V ISHE on the constant magnetic field H0 applied to Lu3Fe5O12/Pt at different distances between the emitter and the heterostructure.

Download (159KB)
4. Fig. 3. Graphic explanations for the conducted electrodynamic modeling. Schematic diagram of the numerical model and the coordinate system. Inside the computational domain with dimensions dx × dy × dz, there is a simulated waveguide with dimensions a × b × c. The H10 mode was fed to the left face of the waveguide, parallel to the XOZ plane (a). The normalized moduli of the electric e = || and magnetic h = || fields obtained in the calculation in the z = dz /2 plane. The scale corresponds to the relative magnitude of the field modulus. Data were taken along the white line for comparison with the experiment (b).

Download (91KB)
5. Fig. 4. Dependence of the resonant ISHE voltage VISHE on the distance to the microwave emitter Ly, which is the open end of the waveguide. The dots show the experimental data. The solid line shows the simulation results.

Download (92KB)

Copyright (c) 2025 Russian Academy of Sciences