Сцинтилляционные детекторы CsI и SrI₂ (Eu) со съемом сигнала кремниевыми фотоумножителями с порогом регистрации ниже 200 эВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обсуждаются концепции детекторов из неорганических сцинтилляторов CsI(pure) и SrI2(Eu) со съемом светового сигнала матрицами кремниевых фотоумножителей. Данные детекторы предполагается использовать при низких температурах для регистрации сигналов со сверхнизким энерговыделением. Приводятся результаты измерения светосбора прототипов детекторов. Получены удельные светосборы на уровне 30–40 фотоэлектронов на один кэВ выделенной в детекторах энергии. Исследованы зависимости тепловых шумов и оптической связи кремниевых фотоумножителей от температуры. Показано, что использование детекторов при отрицательных температурах позволяет эффективно подавить шумы фотодетекторов и обеспечить порог регистрации на уровне нескольких фотоэлектронов. Данные детекторы могут быть востребованы в различных фундаментальных и прикладных областях, в частности, в физике низкоэнергетичных нейтрино.

Полный текст

Доступ закрыт

Об авторах

А. Г. Баранов

Институт ядерных исследований Российской академии наук; Национальный исследовательский ядерный университет “МИФИ”

Автор, ответственный за переписку.
Email: saip07@mail.ru
Россия, 108840, Москва, Троицк, ул. Физическая, 27; 115409, Москва, Каширское шоссе, 31

А. П. Ивашкин

Институт ядерных исследований Российской академии наук

Email: saip07@mail.ru
Россия, 108840, Москва, Троицк, ул. Физическая, 27

С. А. Мусин

Институт ядерных исследований Российской академии наук; Московский физико-технический институт (Национальный исследовательский университет)

Email: saip07@mail.ru
Россия, 108840, Москва, Троицк, ул. Физическая, 27; 141701, Долгопрудный, Московская обл., Институтский пер., 9

Г. Х. Салахутдинов

Национальный исследовательский ядерный университет “МИФИ”

Email: baranov@inr.ru
Россия, 115409, Москва, Каширское шоссе, 31

А. О. Стрижак

Институт ядерных исследований Российской академии наук; Московский физико-технический институт (Национальный исследовательский университет)

Email: saip07@mail.ru
Россия, 108840, Москва, Троицк, ул. Физическая, 27; 141701, Долгопрудный, Московская обл., Институтский пер., 9

Список литературы

  1. Юхимчук А.А., Голубков А.Н., Максимкин И.П. и др. // Физмат. 2023. Т. 1. №1. С. 5.https://doi.org/10.56304/S2949609823010057
  2. Akimov D., Berdnikova A., Belov V. et al. // J. Phys. Conf. Ser. 2016. V. 675. P. 012016.https://doi.org/10.1088/1742-6596/675/1/012016
  3. Collar J.I., Fields N.E., Hai M., Hossbach T.W., Orrell J.L., Overman C.T., Perumpilly G., Scholz B. // Nucl. Instrum. Meth. 2015. V. 773. P. 56.https://doi.org/10.1016/j.nima.2014.11.037
  4. Aalseth C.E., Barbeau P.S., Colaresi J. et al. // Phys. Rev. 2013. V. 88. P. 012002.https://doi.org/10.1103/PhysRevD.88.012002
  5. Beda A.G., Brudanin V.B., Egorov V.G., Medvedev D.V., Shirchenko M.V., Starostin A.S. // Phys. Part. Nuclei Lett. 2010. V. 7. P. 406.https://doi.org/10.1134/S1547477110060063
  6. Moszynski M, Balcerzyk M., Czarnacki W. // NIM. 2005. V. 537. P. 357.https://doi.org/10.1016/j.nima.2004.08.043
  7. Ding K., Chernyak D., Liu J. // Eur. Phys. J. C. 2020. V. 80. P. 1146.https://doi.org/10.1140/epjc/s10052-020-08712-2
  8. Lewis C.M., Collar J.I. // Phys. Rev. C. 2021. V. 104. P. 014612.https://doi.org/10.1103/PhysRevC.104.014612
  9. Liu F., Fan X., Sun X., Liu B., Li J., Deng Y., Jiang H., Jiang T., Yan P. // Sensors. 2022. V. 22. P. 1099.https://doi.org/10.3390/s22031099
  10. Boulay M.G., Camillo V., Canci N. et al. // Front. Phys. 2023. V. 11.https://doi.org/10.3389/fphy.2023.1181400
  11. Kim Y.D., Hahn I.S., Hwang M.J. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2005. V. 552. № 3. P. 456.https://doi.org/10.1016/j.nima.2005.06.080
  12. Lee H.S. et al. (KIMS Collaboration) // Physics Letters B. 2006. V. 633. № 2–3. P. 201.https://doi.org/10.1016/j.physletb.2005.12.035
  13. Takabe M., Kishimoto A., Kataoka J., Sakuragi S., Yamasaki Y. // Nucl. Instrum. Methods. Phys. Res. A. 2016. V. 831. P. 260.https://doi.org/10.1016/j.nima.2016.04.043
  14. Alekhin M.S., Khodyuk I.V., de Haas J.T.M., Dorenbos P. // IEEE Transactions on Nuclear Science. 2012. V. 59. № 3. P. 665.https://doi.org/10.1109/TNS.2012.2188544
  15. Belli P., Bernabei R., Cerulli R. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2012. V. 670. P. 10.https://doi.org/10.1016/j.nima.2011.12.051

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Амплитудные спектры шумов (а) и гамма-излучения от источника ⁵⁷Co (б), полученные при измерениях на сцинтилляторе CsI(pure) размером 15×15×15 мм³.

Скачать (25KB)
3. Рис.2. Зависимость частоты теплового шума от порога регистрации при различных значениях перенапряжения на кремниевом фотоумножителе.

Скачать (22KB)
4. Рис. 3. Амплитудные спектры шумов SiPM матрицы (слева) и гамма-излучения от источника ²⁴¹Am (справа) для сцинтиллятора SrI₂(Eu) размером 13×13×13 мм³.

Скачать (26KB)
5. Рис. 4. Низкоамплитудные спектры сигналов с SiPM-матрицы при температуре +6°C (слева) и –65°C (справа).

Скачать (26KB)
6. Рис. 5. Зависимость частоты тепловых шумов от температуры SiPM для разных амплитудных порогов регистрации при величине перенапряжения 3.5 В.

Скачать (15KB)
7. Рис. 6. Зависимость величины оптической связи между пикселями SiPM от температуры фотодетектора при для двух значений перенапряжения 3.5 В (красные точки) и 4.5 В (синие точки).

Скачать (10KB)

© Российская академия наук, 2024