Энергетическое разрешение спектрометра с конвертером из ориентированного кристалла

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ориентированный вдоль оси монокристаллический конвертер, находящийся перед электромагнитным спектрометром, меняет отклик спектрометра, регистрирующего электроны с энергиями в десятки ГэВ. При энергии электронов 26 и 28 ГэВ в зависимости от ориентации, толщины, типа кристаллического конвертора и толщины спектрометра относительное энергетическое разрешение спектрометра улучшается на величину от 15% до 80%.

Full Text

Restricted Access

About the authors

В. А. Басков

Физический институт им. П.Н. Лебедева Российской академии наук

Author for correspondence.
Email: baskov@x4u.lebedev.ru
Russian Federation, 119991, Москва, Ленинский просп., 53

References

  1. Uggerhoj U.I. // Reviews of Modern Physics. 2005. V. 77. P. 1131. https://doi.org/10.1103/RevModPhys.77.1131
  2. Байер В.Н., Катков В.М., Страховенко В.М. Электромагнитные процессы при высокой энергии в ориентированных монокристаллах. Новосибирск: Наука, 1989.
  3. Ахиезер А.И., Шульга Н.Ф. // ЖЭТФ. 1983. Т. 85. С. 94.
  4. Басков В.А. // КСФ. 2012. № 10. С.28. https://doi.org/10.3103/S1068335612100041
  5. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Хабло В.А. // КСФ. 2013. № 5. С. 3. https://doi.org/10.3103/S1068335613050011
  6. Басков В.А. // КСФ. 2015. № 4. С. 3. https://doi.org/10.3103/S1068335615040016
  7. Басков В.А. // Письма в ЖЭТФ. 2014. Т. 99. С. 785. https://doi.org/10.7868/S0370274X14120017
  8. Soldani M., Bandiera L., Moulson M. et al. // Eur. Phys. J. C. 2023. V. 83. P. 101. https://doi.org/10.1140/epjc/s10052-023-11247-x
  9. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Хабло В.А. // Труды сессии-конференции ЯФ ОФН РАН “Физика фундаментальных взаимодействий”, ИТЭФ, Москва, 2011. С. 16. http://matras.itep.ru/npd2kl/Malyi_za/24_november/ ba/Pt
  10. Зверев В.Г., Лучков Б.И., Тугаенко В.Ю. Космофизика. Москва: Энергоиздат, 1987. С. 71.
  11. Басков В.А. // КСФ. 2016. № 5. С. 3. https://doi.org/10.3103/S1068335616050018
  12. Басков В.А. // КСФ. 2014. №3. С.32. https://doi.org/10.3103/S1068335614030051
  13. Байер В.Н., Басков В.А., Ганенко В.Б. и др. Препринт ФИАН №204. Москва, 1988.
  14. Baskov V.A., Khablo V.A., Kim V.V., Sergienko V.I. // Nucl. Instrum. Methods. Phys. Res. A. 1990. V. 297. P. 329. https://doi.org/10.1016/0168-9002(90)91315-3
  15. Басков В.А., Белоусов А.С., Ким В.В., Малиновский Е.И., Усик А.П., Хабло В.А // ПТЭ. 2011. Т. 5. С. 66.
  16. Словинский Б. // ЭЧАЯ. 1994. Т. 25. № 2. С. 417.
  17. Горячев В. Н., Денисов С. П. // Ядерная физика и инжиниринг. 2021. Т. 12. № 4. С. 229. https://doi.org/10.56304/S2079562920060275
  18. Басков В.А., Говорков Б.Б., Ким В.В., Лучков Б.И., Сергиенко В.И., Тугаенко В.Ю., Хабло В.А. // КСФ. 1992. № 9/10. С. 41.
  19. Tikhomirov V.V., Haurylavets V. V., Lobko A. S., Mechinsky V. A. // Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016). 2017. V. 200. P. 259. https://doi.org/10.1007/978-3-319-68465-9_16
  20. Elsener K., Møller S.P., Petersen J.B.B., Uggerhøj E. // Cosmic Gamma Rays, Neutrinos, and Related Astrophysics. NATO ASI Series. V. 270. P 457. https://doi.org/10.1007/978-94-009-0921-2_31
  21. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Хабло В.А. // КСФ. 2012. № 8. С. 16. https://doi.org/10.3103/S1068335612080039
  22. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Хабло В.А. // КСФ. 2013. № 4. С. 35. https://doi.org/10.3103/S1068335613040052
  23. Басков В.А., Ким В.В., Лучков Б.И., Тугаенко В.Ю., Хабло В.А. // КСФ. 2011. № 6. С. 8. https://doi.org/10.3103/S1068335611060029

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of directional spectrometers: a – registration of e-, e+, γ-quanta based on axially oriented opaque and transparent crystals, b – scheme of application of directional spectrometers in an experimental setup.

Download (150KB)
3. Fig. 2. Scheme for determining the width of the orientation dependence ΔQ ΔE of the energy release of an electromagnetic shower in a Cherenkov counter with a thickness of 1X0, emerging from a tungsten crystal with a thickness of tW = 1 mm: E = 28 GeV, TW = 77K, axis <111>.

Download (33KB)
4. Fig. 3. Schematic diagram of the experimental setup “Cascade”: A1–A3 and C1–C6 are scintillation counters, PC1–PC3 are beam proportional chambers, P is a radiator, MM is a magnet of the photon tagging system, G is a goniometer, M is a crystal converter, T is a scintillation counter for registering charged shower particles, SCLS is a composite Cherenkov shower spectrometer, CS is a Cherenkov spectrometer; MSPPS is a multichannel lead-scintillation total absorption spectrometer.

Download (33KB)
5. Fig. 4. a – Schematic diagram of the CPSS and the location of the CPSS and CP on the beam: 1 – radiator; 2 – aluminized mylar, 3 – black opaque paper, 4 – black insulating tape, 5 – FEU-85, 6 – divider, 7 – fasteners for the radiator, FEU and dividers, 8 – housing. b – Schematic diagram of the CP: 1 – radiator, 2 – FEU-49, 3 – divider, 4 – housing.

Download (133KB)
6. Fig. 5. Cascade curves of the development of an electromagnetic shower in the SCLS from electrons with energy Ee = 26 GeV depending on the thickness of the misoriented (a) and oriented along the <111> axis (b) tungsten crystals in front of the SCLS, K – calibration (there is no crystal in front of the SCLS).

Download (121KB)
7. Fig. 6. Dependence of the root-mean-square resolution σ of the SCHLS+CS spectrometer on its thickness tSCHLS+CS and the thickness of the misoriented (a) and oriented along the <111> axis tungsten crystal converter (b); E = 26 GeV, TW = 293K, K – calibration (tW = 0), the crystal thicknesses are shown to the left of the curves.

Download (104KB)
8. Fig. 7. Dependence of the relative energy resolution of the total spectrometer on its thickness tСС for a misoriented (a) and oriented along the <111> axis (b) tungsten crystal converter, E = 26 GeV, Tw = 293 K, K – calibration (tW = 0).

Download (97KB)
9. Fig. 8. Dependence of the relative energy resolution of the total spectrometer on the thickness of the tungsten crystal converter tW; the thickness of the SCHLS spectrometer in radiation lengths is shown to the right of the curves; E = 26 GeV, ○ – calibration, ● – tw = 293K; ▲, Δ – tw =77K: a – the converter is misoriented, b – the converter is oriented along the <111> axis, c – the total spectrometer (tSCHLS + CR = 25X0; ▲ and Δ – the converter is misoriented and oriented along the <111> axis, respectively).

Download (149KB)
10. Fig. 9. The ratio of the optimal thicknesses of the crystalline tungsten converter in front of the total spectrometer (tW opt) and the thicknesses of the total spectrometer (tCC opt), at which the relative energy resolution of the total spectrometer is the best.

Download (30KB)
11. Fig. 10. Orientation dependences of the relative energy resolution δ of the first counter of the SCHLS (tSCHLS = 1X0) on the thickness of the crystal converter: a – tungsten converter (<111>); b – silicon converter (<110>); ●, ▲, ○ – E = 26 GeV; Δ, ■ – E = 28 GeV; Δ – T = 77K; ●, ▲, ○ – T = 293K; the thicknesses of the converters are shown above the dependences.

Download (45KB)
12. Fig. 11. Dependence of the width of the orientation dependence of the relative energy resolution ΔΘδ of the first counter of the SCLS on the thickness tcrystals of tungsten (●, ○, <111>) and silicon (▲, <110>) crystals: ● – E = 26 GeV, TW = 293K; ○, ▲ – E = 28 GeV, TW = 77K, TSi = 293K.

Download (15KB)
13. Fig. 12. The relationship between the relative energy resolution δ of the first counter of the SCLS and the width of the orientation dependence ∆Θδ of tungsten (●, ○) and silicon (▲) crystals: ● – E = 26 GeV, TW = 293 K; ○, ▲ – E = 28 GeV, TW = 77 K, TSi = 293 K; ●, ○ – <111>, ▲– <110>.

Download (27KB)

Copyright (c) 2024 Russian Academy of Sciences