Моделирование ДЕТЕКТОРА АНТИНЕЙТРИНО ДЛЯ ВТОРОЙ НЕЙТРИННОЙ ЛАБОРАТОРИИ НА РЕАКТОРЕ СМ-3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Выполнено моделирование эксперимента по поиску стерильного нейтрино с новым детектором для второй нейтринной лаборатории на реакторе СМ-3 (Димитровград, Россия). Детектор сцинтилляционного типа предназначен для регистрации реакторных антинейтрино и имеет многосекционную структуру с горизонтальным расположением секций. В результате моделирования получены распределения счетов от мгновенных и задержанных сигналов, а также эффективность детектора в зависимости от выбранных порогов. Проведено моделирование потока антинейтрино с учетом размеров активной зоны реактора и ее пространственного расположения по отношению к детектору. Благодаря этому рассчитан эффект, который должен быть получен в результате измерений для заданных параметров осцилляций и энергетического разрешения детектора.

Об авторах

А. К. Фомин

Петербургский институт ядерной физики им. Б.П. Константинова
Национального исследовательского центра “Курчатовский институт

Email: fomin_ak@pnpi.nrcki.ru
Россия, 188300, Гатчина, Ленинградской обл., мкр. Орлова Роща, 1

А. П. Серебров

Петербургский институт ядерной физики им. Б.П. Константинова
Национального исследовательского центра “Курчатовский институт

Автор, ответственный за переписку.
Email: fomin_ak@pnpi.nrcki.ru
Россия, 188300, Гатчина, Ленинградской обл., мкр. Орлова Роща, 1

Список литературы

  1. LSND Collaboration. Aguilar A. et al. // Phys. Rev. D. 2001. V. 64. P. 112007. https://doi.org/10.1103/PhysRevD.64.112007
  2. MiniBooNE Collaboration. Aguilar-Arevalo A.A. et al. // Phys. Rev. Letters. 2018. V. 121. P. 221801. https://doi.org/10.1103/PhysRevLett.121.221801
  3. Mention G., Fechner M., Lasserre Th., Mueller Th.A., Lhuillier D., Cribier M., Letourneau A. // Phys. Rev. D. 2011. V. 83. P. 073006. https://doi.org/10.1103/PhysRevD.83.073006
  4. GALLEX Collaboration. Hampel W. et al. // Phys. Letters B. 1998. V. 420. P. 114. https://doi.org/10.1016/S0370-2693(97)01562-1
  5. SAGE Collaboration. Abdurashitov J. et al. // Phys. Rev. C. 1999. V. 59. P. 2246. https://doi.org/10.1103/PhysRevC.59.2246
  6. BEST Collaboration. Barinov V.V. et al. // Phys. Rev. C. 2022. V. 105. P. 065502. https://doi.org/10.1103/PhysRevC.105.065502
  7. Serebrov A.P., Samoilov R.M., Ivochkin V.G., Fomin A.K., Zinoviev V.G., Neustroev P.V., Golovtsov V.L., Volkov S.S., Chernyj A.V., Zherebtsov O.M., Chaikovskii M.E., Petelin A.L., Izhutov A.L., Tuzov A.A., Sazontov S.A. et al. // Phys. Rev. D. 2021. V. 104. P. 032003. https://doi.org/10.1103/PhysRevD.104.032003
  8. Neutrino-4 Collaboration. Samoilov R.M. et al. // LXXI International conference “NUCLEUS–2021. Nuclear physics and elementary particle physics. Nuclear physics technologiesˮ. St.Petersburg, September 20−25, 2021. https://indico.cern.ch/event/1012633/contributions/ 4480300/attachments/2315193/3940949/Samoilov_ neutrino-4_nucleus21.pdf
  9. Alekseev I., Belov V., Brudanin V., Danilov M., Egorov V., Filosofov D., Fomina M., Hons Z., Kazartsev S., Kobyakin A., Kuznetsov A., Machikhiliyan I., Medvedev D., Nesterov V., Olshevsky A. et al. // Phys. Lett. B. 2018. V. 787. P. 56. https://doi.org/10.1016/j.physletb.2018.10.038
  10. NEOS Collaboration. Ko Y.J. et al. // Phys. Rev. Lett. 2017. V. 118. P. 121802. https://doi.org/10.1103/PhysRevLett.118.121802
  11. PROSPECT Collaboration. Andriamirado M. et al. // Phys. Rev. D. 2021. V. 103. P. 032001. https://doi.org/10.1103/PhysRevD.103.032001
  12. STEREO Collaboration. Almazán H. et al. // Phys. Rev. D. 2020. V. 102. P. 052002. https://doi.org/10.1103/PhysRevD.102.052002

Дополнительные файлы


© А.К. Фомин, А.П. Серебров, 2023