Водоэкстрагируемое органическое вещество почв разной степени смытости и намытости на малом водосборе в центральной лесостепи Среднерусской возвышенности: намытые почвы в днище балки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено водоэкстрагируемое органическое вещество (ВЭОВ) намытых почв: стратоземов темно-гумусовых водно-аккумулятивных, Novic Protocalcic Chernozems, в нераспахиваемом днище балки. Оно сопоставлено с ВЭОВ расположенных рядом распахиваемых почв на пашне малого водосбора. Проведено послойное исследование состава ВЭОВ стратоземов от поверхности до глубины 120 см с шагом 20 см. Водные вытяжки были охарактеризованы по содержанию органического углерода, азота и величине рН. Оптические свойства ВЭОВ оценивали методами спектрофотометрии и флуориметрии. Проведено сравнение оптических свойств ВЭОВ агро-черноземов и балочных стратоземов; выявлены особенности изменения этих свойств с глубиной в стратоземах. Показано, что эрозионно-аккумулятивные процессы оказывают значимое воздействие на состав ВЭОВ почв. При этом содержание растворенного углерода в ВЭОВ значимо не различается ни между пахотными черноземами и балочными стратоземами, ни вглубь по профилю стратоземов в днище балки. В свою очередь, содержание азота в ВЭОВ пахотных черноземов в целом больше, чем в ВЭОВ балочных стратоземов, и в последних оно закономерно убывает с глубиной. Вероятно, уменьшение содержания азота в ВЭОВ с глубиной связано с его поглощением корнями растений и с увеличением с глубиной доли анаэробных зон, где активизируются процессы денитрификации. Верхние 0–60 см балочных стратоземов активно задерживают привносимые из пахотных почв элементы питания, в первую очередь, растворенный азот. С глубины 60 см отмечается возрастание содержания общего органического углерода. Увеличение содержания углерода в глубинных слоях стратоземов можно объяснить накоплением проникающего сверху растворенного органического вещества, которое, с одной стороны, сорбируется почвой, а с другой, консервируется вследствие снижения микробной активности из-за недостатка элементов питания.

Об авторах

В. А. Холодов

Почвенный институт им. В.В. Докучаева

Автор, ответственный за переписку.
Email: vkholod@mail.ru
ORCID iD: 0000-0002-6896-7897
Россия, Москва

Н. В. Ярославцева

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

А. Р. Зиганшина

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

Н. Н. Данченко

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

И. В. Данилин

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

Ю. Р. Фарходов

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

А. П. Жидкин

Почвенный институт им. В.В. Докучаева

Email: vkholod@mail.ru
Россия, Москва

Список литературы

  1. Караванова Е.И. Водорастворимые органические вещества: фракционный состав и возможности их сорбции твердой фазой лесных почв // Почвоведение. 2013. № 8. С. 924–936.
  2. Каштанов А.Н., Явтушенко В.Е. Агроэкология почв склонов. М.: Колос, 1997. С. 88–107.
  3. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  4. Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
  5. Кононова М.М. Органическое вещество почвы. М.: Изд-во АН СССР, 1963. 315 с.
  6. Кошовский Т.С. Латеральная миграция твердофазного вещества лесостепных почв в ландшафтно-геохимических аренах Среднерусской возвышенности. Автореф. дис. … канд. геогр. наук. М., 2019. 25 с.
  7. Куликова Н.А. Влияние водорастворимых компонентов почв на размер и электрокинетический потенциал наноалмазов // Почвоведение. 2020. № 7. С. 816–827.
  8. Маслов М.Н., Токарева О.А., Караванова Е.И., Маслова О.А., Копеина Е.И. Динамика биологической активности и водорастворимого органического вещества в почвах горной тундры Хибин на склонах разной экспозиции // Почвоведение. 2021. № 4. С. 436–450.
  9. Пансю М., Готеру Ж. Анализ почвы. Справочник. Минералогические, органические и неорганические методы анализа. СПб.: ЦОП Профессия, 2014. 800 с. Pansu M., Gautheyrou J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. New York: Springer, 2003. 995 p.
  10. Холодов В.А., Иванов В.А., Фарходов Ю.Р., Сафронова Н.А., Артемьева З.С., Ярославцева Н.В. Оптические характеристики фракций органического вещества агрегатов типичных черноземов // Бюл. Почв. Ин-та им. В.В. Докучаева. 2017. Вып. 90. С. 56–72. https://doi.org/10.19047/0136-1694-2017-90-56-72
  11. Холодов В.А., Ярославцева Н.В., Зиганшина А.Р., Данченко Н.Н., Фарходов Ю.Р., Максимович С.В., Жидкин А.П. Водоэкстрагируемое органическое вещество почв разной степени смытости и намытости на малом водосборе в центральной лесостепи Среднерусской возвышенности: распахиваемые почвы // Почвоведение. 2024. № 6. С. 783–796.
  12. Холодов В.А., Ярославцева Н.В., Фарходов Ю.Р., Яшин М.А., Лазарев В.И., Ильин Б.С., Филиппова О.И., Воликов А.Б., Иванов А.Л. Оптические характеристики экстрагируемых фракций органического вещества типичных черноземов в многолетних полевых опытах // Почвоведение. 2020. № 6. С. 691–702. https://doi.org/10.31857/S0032180X20060052
  13. Чеботина М.Я. Влияние водорастворимого вещества лесной подстилки на поглощение радиоактивных изотопов в почве // Радиоэкологические исследования почв и растений. Сер. Тр. Ин-та экологии растений и животных. Свердловск, 1975. С. 21–25.
  14. Balcke G.U., Kulikova N.A., Hesse S., Kopinke F.-D., Perminova I. V., Frimmel F.H. Adsorption of Humic Substances onto Kaolin Clay Related to Their Structural Features // Soil Sci. Soc. Am. J. 2002. V. 66(6). P. 1805-1812.
  15. Bengtsson M.M., Attermeyer K., Catalán N. Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? // Hydrobiologia. 2018. V. 822(1). P. 1–17.
  16. Bistarelli T.L., Poyntner C., Santín C., Doerr S.H., Talluto M. V., Singer G., Sigmund G. Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment // ACS ES&T Water. 2021. V. 1(7). P. 1648–1656.
  17. Chantigny M.H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices // Geoderma. 2003. V. 113(3–4). P. 357–380.
  18. Chen M., Jung J., Lee Y.K., Hur J. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean // Sci. Total Environ. 2018. V. 639. P. 624–632.
  19. Coble P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy // Marine Chemistry. 1996. V. 51(4). P. 325–346.
  20. Eder A., Weigelhofer G., Pucher M., Tiefenbacher A., Strauss P., Brandl M., Blöschl G. Pathways and composition of dissolved organic carbon in a small agricultural catchment during base flow conditions // Ecohydrol. Hydrobiol. Elsevier, 2022. V. 22(1). P. 96–112.
  21. Fortier M., Lemyre J., Ancelin E., Oulyadi H., Driouich A., Vicré M., Follet-Gueye M.L., Guilhaudis L. Development of a root exudate collection protocol for metabolomics analysis using Nuclear Magnetic Resonance // Plant Science. 2023. V. 331. P. 111694.
  22. Fröberg M., Berggren D., Bergkvist B., Bryant C., Knicker H. Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates // Geoderma. 2003. V. 113. P. 311–322.
  23. Gao Z., Guéguen C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin // Deep-Sea Research Part I: Oceanographic Research Papers. 2017. V. 121. P. 30–37.
  24. Gold-Bouchot G., Polis S., Castañon L.E., Flores M.P., Alsante A.N., Thornton D.C.O. Chromophoric dissolved organic matter (CDOM) in a subtropical estuary (Galveston Bay, USA) and the impact of Hurricane Harvey // Environ. Sci. Poll. Res. 2021. V. 28(38). P. 53045–53057.
  25. Groeneveld M., Catalán N., Attermeyer K., Hawkes J., Einarsdóttir K., Kothawala D. Selective adsorption ofterrestrial dissolved organic matter toinorganic surfaces along a boreal inlandwater continuum // J. Geophys. Res.: Biogeosciences. 2020. V. 125. P. https://doi.org/10.1029/2019JG005236
  26. Helms J.R., Stubbins A., Ritchie J.D., Minor E.C., Kieber D.J., Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter // Limnology and Oceanography. 2008. V. 53(3). P. 955–969.
  27. ISO 10694:1995 Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis).
  28. ISO 8245:1999 Water quality – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  29. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  30. Kalbitz K., Solinger S., Park J.H., Michalzik B., Matzner E. Controls on the dynamics of dissolved organic matter in soils: a review // Soil Science. 2000. V. 165. P. 277–304.
  31. Kida M., Kojima T., Tanabe Y., Hayashi K., Kudoh S., Maie N., Fujitake N. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams // Water Research, 2019. V. 163. P. 114901.
  32. Mann P.J., Spencer R.G.M., Hernes P.J., Six J., Aiken G.R., Tank S.E., McClelland J.W., Butler K.D., Dyda R.Y., Holmes R.M. Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements // Front. Earth Sci. 2016. V. 4(25). P. 1–19.
  33. McDowell W.H., Likens, G.E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley // Ecolog. Soc. Am. 1988. V. 58. P. 177–195.
  34. Michalzik B., Tipping E., Mulder J., Gallardo-Lancho J.F., Matzner E., Bryant C.L., Clarke N., Lofts S., Vicente-Esteban M. Modelling the production and transport of dissolved organic carbon in forest soils // Biogeochemistry. 2003. V. 66. P. 241–264.
  35. Morales M.E., Iocoli G.A., Allegrini M., Villamil M.B., Zabaloy M.C. Response of root exudates and bacterial community to N fertilization and termination methods in Avena sativa L. as a winter cover crop model // Eur. J. Soil Biol. 2023. V. 114. 103453.
  36. Murphy K.R., Stedmon C.A., Graeber D., Bro R. Fluorescence spectroscopy and multi-way techniques. PARAFAC // Anal. Methods. 2013. V 5(23). P. 6557–6566.
  37. OpenFluor, Lablicate GmbH. URL: https://openfluor.lablicate.com/home
  38. Osburn C.L., Wigdahl C.R., Fritz S.C., Saros J.E. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains // Limnology and Oceanography. 2011. V. 56(6). P. 2371–2390.
  39. Panettieri M., Guigue J., Chemidlin Prevost-Bouré N., Thévenot M., Lévêque J., Guillou C. Le, Maron P.A., Santoni A.L., Ranjard L., Mounier S., Menasseri S., Viaud V., Mathieu O. Grassland-cropland rotation cycles in crop-livestock farming systems regulate priming effect potential in soils through modulation of microbial communities, composition of soil organic matter and abiotic soil properties // Agriculture, Ecosystems and Environment. 2020. V. 299. P. 106973.
  40. Perminova I.V., Shirshin E.A., Konstantinov A.I., Zherebker A.Ya, Dubinenkov I.V., Lebedev V.A., Kulikova N.A., Nikolaev E.N., Bulygina E., Holmes R.M. The Structural Arrangement and Relative Abundance of Aliphatic Units May Effect Long-Wave Absorbance of Natural Organic Matter as Revealed by 1H NMR Spectroscopy // Environ. Sci. Technol. 2018. V. 52(21). P. 12526-12537. https://doi.org/10.1021/acs.est.8b01029
  41. Pitta E., Zeri C. The impact of combining data sets of fluorescence excitation – emission matrices of dissolved organic matter from various aquatic sources on the information retrieved by PARAFAC modeling // Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy. 2021. V. 258. P. 119800.
  42. Pucher M. PARAFAC analysis of EEM data to separate DOM components in R staRdom : spectroscopic analysis of dissolved organic matter in R. https://cran.r-project.org/web//packages/staRdom/vignettes/PARAFAC_analysis_of_EEM.html
  43. Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., Graeber, D. StaRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R // Water (Switzerland). 2019. V. 11. P. https://doi.org/10.3390/ w11112366
  44. Rodrigues S.M., Trindade T., Duarte A.C., Pereira E., Koopmans G.F., Römkens P.F.A.M. A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools // TrAC – Trends Anal. Chem. 2016. V. 75. P. 129–140.
  45. Sharma P., Laor Y., Raviv M., Medina S., Saadi I., Krasnovsky A., Vager M., Levy G.J., Bar-Tal A., Borisover M. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil // Geoderma. 2017. V. 286. P. 73–82.
  46. Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley, , 1994. P. 512.
  47. Stockdale A., Bryan N.D. The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence // Earth-Science Rev. 2013. V. 121. P. 1–17.
  48. Swenson T.L., Jenkins S., Bowen B.P., Northen T.R. Untargeted soil metabolomics methods for analysis of extractable organic matter // Soil Biol. Biochem. 2015. V. 80. P. 189–198.
  49. Toosi E.R., Schmidt J.P., Castellano M.J. Land use and hydrologic flowpaths interact to affect dissolved organic matter and nitrate dynamics // Biogeochemistry. 2014. V. 120 (1–3). P. 89–104.
  50. Vergnoux A., Di Rocco R., Domeizel M., Guiliano M., Doumenq P., Theraulaz F. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches // Geoderma. 2011. V. 160 (3-4), P. 434-443.
  51. Walker S.A., Amon R.M.W., Stedmon C.A. Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers // J. Geophys. Res: Biogeosciences. 2014. V. 118(4). P. 1689–1702.
  52. Wünsch U.J., Geuer J.K., Lechtenfeld O.J., Koch B.P., Murphy K.R., Stedmon C.A. Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition // Marine Chem. 2018. V. 207. P. 33–41.
  53. Wünsch U.J., Murphy K.R., Stedmon C.A. The One-Sample PARAFAC Approach Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic Matter // Environ. Sci. Technol. 2017. V. 51(20). P. 11900–11908.
  54. Yamashita Y., Maie N., Briceño H., Jaffé R. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela // Journal of Geophysical Research: Biogeosciences. 2010a. V. 115. P. G00F10.
  55. Yamashita Y., Panton A., Mahaffey C., Jaffe R. Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation–emission matrix fluorescence and parallel factor analysis // Ocean Dynamics. 2011. V. 61. P. 569–579. https://doi.org/10.1007/s10236-010-0365-4
  56. Yamashita, Y., Scinto, L.J., Maie, N., Jaffe, R. Dissolved Organic Matter Characteristics Across a Subtropical Wetland’s Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics // Ecosystems. 2010. V. 13. P. 1006–1019.
  57. Zhou, X., Johnston, S.E., Bogard, M.J. Organic matter cycling in a model restored wetland receiving complex effluent // Biogeochemistry. 2023. V. 162. P. 237–255. https://doi.org/10.1007/s10533-022-01002-x
  58. Zsolnay A., Baigar E., Jimenez M., Steinweg B., Saccomandi F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying // Chemosphere. 1999. V. 38(1). P. 45–50.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема расположения малого водосбора (слева) и космический снимок малого водосбора с наложенными горизонталями и точками обследования почв (справа).

3. Рис. 2. Содержание в слоях почв органического углерода (ОС), азота (N), величина рН водной вытяжки (рН), количество растворенного органического углерода в ВЭОВ (ВЭОС): 1 – средние показатели слоя ٠– 2٠ см пахотных черноземов; 2 – средние показатели слоев с разных глубин стратоземов в днище балки.

Скачать (506KB)
4. Рис. 3. Усредненные спектры поглощения ВЭОВ почв: залитые символы – слои стратоземов дна балки через каждые 20 см от ٠ до 120 см; незалитые символы –для слоя ٠– 2٠ см выше расположенных пахотных черноземов.

Скачать (449KB)
5. Рис. 4. Показатели спектров поглощения SUVA254, E2/E3, E4/E6, S275–295, S350–400 и SR ВЭОВ в слоях почв: 1 – средние показатели слоя ٠– 2٠ см выше расположенных пахотных черноземов; 2 – стратоземы дна балки.

Скачать (745KB)
6. Рис. 5. Типичные трехмерные спектры флуоресценции ВЭОВ в слоях почв (٠– 1 2٠ см): 1 – пахотные черноземы; 2 – стратоземы балки.

Скачать (467KB)
7. Рис. 6. Компоненты С1–С5 см. табл. 1, полученные разложением флуоресцентных 3D-спектров ВЭОВ с помощью PARAFAC. Каждая компонента в RU нормирована на свой максимум интенсивности.

Скачать (973KB)
8. Рис. 7. Величины флуоресцирующих компонентов С 1–С 5 см. табл. 1 (RU) ВЭОВ в слоях почв: 1 – средние показатели слоя ٠– 2٠ см выше расположенных пахотных черноземов; 2 – стратоземы дна балки.

Скачать (344KB)

© Российская академия наук, 2024