Soil Properties Sensitivity to Land-Use Change from Cropland to Abandoned Land

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conversion of land use is a crucial factor in the dynamics of soil carbon stocks. The widespread abandonment of cropland that began in Russia during the 1990s resulted in vegetation and soil restoration. This led to changes in soil properties and carbon fluxes within the plant-soil-atmosphere system. The aim of the study was to investigate the effects of post-agricultural soil restoration on the rate of change in soil properties, specifically organic carbon (Corg) and total nitrogen (Ntotal) contents, microbial respiration rate, and activity of hydrolytic enzymes. A post-agricultural chronosequence formed on Haplic Luvisols, including current cropland, 7- and 25-year-old post-agricultural abandoned land and grassland was studied. The rate of change in soil properties during post-agricultural restoration was evaluated based on their sensitivity to land use changes, with a comparison of changes in soil organic carbon content. The least sensitive properties to land use change were found to be Corg and Ntotal in the mineral-associated organic matter fraction, and pH value. The content of water-soluble nitrogen, Corg and Ntotal in the free and occluded organic matter fractions, as well as β-glucosidase and chitinase activity, were the most sensitive to land use changes. Therefore, the recovery of sensitive soil properties in the upper 10 cm is complete within the first decade after tillage is stopped. In contrast, the restoration of less sensitive properties requires more than 20 years.

About the authors

N. P. Samokhina

Sirius University of Science and Technology; University of Tyumen

Author for correspondence.
Email: samokhina_np@mail.ru
ORCID iD: 0009-0002-0608-6506
Russian Federation, Sirius, 354340; Tyumen, 625003

Е. A. Filimonenko

Sirius University of Science and Technology; University of Tyumen

Email: samokhina_np@mail.ru
Russian Federation, Sirius, 354340; Tyumen, 625003

I. N. Kurganova

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Email: samokhina_np@mail.ru
Russian Federation, Pushchino, 142290

V. O. Lopez de Gerenu

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Email: samokhina_np@mail.ru
Russian Federation, Pushchino, 142290

A. N. Maltseva

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Email: samokhina_np@mail.ru
Russian Federation, Pushchino, 142290

A. K. Khodzhaeva

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Email: samokhina_np@mail.ru
Russian Federation, Pushchino, 142290

S. Y. Zorina

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences – Irkutsk Scientific Center

Email: samokhina_np@mail.ru
Russian Federation, Irkutsk, 664033

L. G. Sokolova

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences – Irkutsk Scientific Center

Email: samokhina_np@mail.ru
Russian Federation, Irkutsk, 664033

N. V. Dorofeev

Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences – Irkutsk Scientific Center

Email: samokhina_np@mail.ru
Russian Federation, Irkutsk, 664033

Y. V. Kuzyakov

University of Gottingen; Peoples Friendship University of Russia

Email: samokhina_np@mail.ru
Germany, Gottingen, 37077; Moscow, 117198 Russia

References

  1. Артемьева З.С., Рыжова И.М., Силёва Т.М., Ерохова А.А. Стабилизация органического углерода в микроагрегатах дерново-подзолистых почв в зависимости от характера землепользования // Вестник Моск. ун-та. Сер. 17, почвоведение. 2013. № 3. С. 19–26.
  2. Артемьева З.С., Федотов Г.Н. Состав функциональных пулов легкоразлагаемого органического вещества автоморфных зонального ряда почв центра русской равнины // Вестник Моск. ун-та. Сер. 17, почвоведение. 2013. № 4. С. 3–10.
  3. Благодатская Е.В., Ананьева Н.Д., Мякшина Т.Н. Характеристика состояния микробного сообщества по величине метаболического коэффициента // Почвоведение. 1995. № 2. С. 205–210.
  4. Воробьева Г.А. Почва как летопись природных событий Прибайкалья: проблемы эволюции и классификации почв. Иркутск: Изд-во Иркут. ун-та, 2010. 205 с.
  5. Журавлева А.И., Алифанов В.М., Благодатская Е.В. Влияние контрастных трофических условий на величины затравочного эффекта в серых лесных почвах // Почвоведение. 2018. № 2. С. 203–210.
  6. Иркутская область: экологические условия развития. Атлас. Иркутск: Роскартография, Изд-во Ин-та географии СО РАН, 2004. 90 с.
  7. Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13. https://doi.org/10.31857/S0002188121050070
  8. Кудеяров В.Н. Современное состояние углеродного баланса и предельная способность почв к поглощению углерода на территории России // Почвоведение. 2015. № 9. С. 1049–1060. https://doi.org/10.7868/S0032180X15090087
  9. Носонов А. М., Чернобровкина В. А. Трансформация систем использования земель в регионах России // Известия Сарат. ун-та. Сер. Науки о Земле. 2024. Т. 24. № 2. С. 92–100. https://doi.org/10.18500/1819-7663-2024-24-2-92-100
  10. Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева. 2008. 182 с.
  11. Семенов В.М., Лебедева Т.Н., Лопес де Гереню В.О., Овсепян Л.А., Семенов М.В., Курганова И.Н. Пулы и фракции органического углерода в почве: структура, функции и методы определения // Почвы и окружающая среда. 2023. Т. 6. № 1. https://doi.org/10.31251/pos.v6i1.199
  12. Хазиев Ф.Х. Функциональная роль ферментов в почвенных процессах // Вестник Академии наук Республики Башкортостан. 2015. Т. 10. № 2. С. 14–24.
  13. Якушев А.В., Журавлева А.И., Кузнецова И.Н. Влияние длительной и кратковременных засух на гидролитические ферменты серой почвы // Почвоведение. 2023. № 6. C. 745–757. https://doi.org/10.31857/S0032180X2260130X
  14. Anderson J.P.E., Domsch K.H. A phisiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. № 3. P. 215–221. https://doi.org/10.1016/0038-0717(78)90099-8
  15. Anderson T., Domsch K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils // Soil Biol. Biochem. 1993. V. 25. P. 393–395. https://doi.org/10.1016/0038-0717(93)90140-7
  16. Blagodatskaya Е., Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review // Biol. Fertil. Soils. 2008. V. 45. P. 115–131. https://doi.org/10.1007/s00374-008-0334-y
  17. Chazdon R., Lindenmayer D., Guariguata M., Crouzeilles R., Benayas J., Chavero E. Fostering natural forest regeneration on former agricultural land through economic and policy interventions // Environ. Res. Lett. 2020. V. 15. P. 043002. https://doi.org/10.1088/1748-9326/ab79e6
  18. Christensen B.T. Physical fractionation of soil and organic matter in primary particle size and density separates // Adv. Soil Sci. 1992. V. 20. P. 1–90. https://doi.org/10.1007/978-1-4612-2930-8_1
  19. Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K., Paul E. The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? // Global Change Biol. 2013. V. 19. №. 4. P. 988–995. https://doi.org/10.1111/gcb.12113
  20. Deng L., Peng C., Huang C., Wang K., Liu Q., Liu Y., Hai X., Shangguan Z. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China // Geoderma. 2019. V. 353. P. 188–200. https://doi.org/10.1016/j.geoderma.2019.06.037
  21. Fontaine S., Barot S., Barré P., Bdioui N, Mary B., Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply // Nature. 2007. V. 450. P. 277–280. https://doi.org/10.1038/nature06275
  22. Guillaume T., Maranguit D., Murtilaksono K., Kuzyakov Y. Sensitivity and resistance of soil fertility indicators to land-use changes: new concept and examples from conversion of Indonesian rainforest to plantations // Ecological Indicators. 2016. V. 67. P. 49–57. https://doi.org/10.1016/j.ecolind.2016.02.039
  23. Gunina A., Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance // Soil Biol. Biochem. 2014. V. 71. P. 95–104.
  24. Guo L.B., Gifford R.M. Soil carbon stocks and land use change: a meta-analysis: soil carbon stocks and land use change // Global Change Biol. 2002. V. 8. P. 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
  25. Ivashchenko K.V., Ananyeva N.D., Vasenev V.I., Kudeyarov V.N., Valentini R. Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region) // Eurasian Soil Sci. 2014. V. 47. P. 892–903. https://doi.org/10.1134/S1064229314090051
  26. John B., Yamashita T., Ludwig B., Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use // Geoderma. 2005. V. 128. P. 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013
  27. Kalinina O., Cherkinsky A., Chertov O.G., Goryachkin S., Kurganova I., Lopes de Gerenyu V., Lyuri D., Kuzyakov Y., Giani L. Post-agricultural restoration: Implications for dynamics of soil organic matter pools // Catena. 2019. V. 181. 104096. https://doi.org/10.1016/j.catena.2019.104096
  28. Kalinina O., Chertov O., Frolov P., Goryachkin S., Kuner P., Küper J., Kurganova I., Lopes de Gerenyu V., Lyuri D., Rusakov A., Kuzyakov Y., Giani L. Alteration process during the post-agricultural restoration of Luvisols of the temperate broad-leaved forest in Russia // Catena. 2018. V. 171. P. 602–612. https://doi.org/10.1016/j.catena.2018.08.004
  29. Kurganova I., Merino A., Lopes de Gerenyu V., Barros N., Kalinina O., Giani L., Kuzyakov Y. Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems // Geoderma. 2019. V. 354. P. 113882. https://doi.org/10.1016/j.geoderma.2019.113882
  30. Kurganova I.N., Lopes de Gerenyu V.O., Mostovaya A.S., Ovsepyan L.A., Telesnina V.M., Lichko V.I., Baeva Yu.I. Effect of Reforestation on Microbiological Activity of Postagrogenic Soils in European Russia // Contemp. Probl. Ecol. 2018. V. 11. P. 704–718. https://doi.org/10.1134/S1995425518070089
  31. Kurganova I.N., Telesnina V.M., Lopes de Gerenyu V.O., Lichko V.I., Karavanova E.I. The Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution // Eurasian Soil Sci. 2021. V. 54. P. 337–35. https://doi.org/10.1134/S1064229321030108
  32. Kurganova I.N., Telesnina V.M., Lopes de Gerenyu V.O., Lichko V.I., Ovsepyan L.A. Changes in the Carbon Stocks, Microbial and Enzyme Activities of Retic Albic Podzol in Southern Taiga during Postagrogenic Evolution // Eurasian Soil Sci. 2022. V. 55. P. 895–910. https://doi.org/10.1134/S1064229322070079
  33. Kuzyakov Y., Gunina A., Zamanian K., Tian J., Luo Y., Xu X., Yudina A., Aponte H., Alharbi H., Ovsepyan L., Kurganova I., Ge T., Guillaume T. New approaches for evaluation of soil health, sensitivity and resistance to degradation // Frontiers of Agricultural Sci. Engineer. 2020 V. 7. P. 282–288. https://doi.org/10.15302/J-FASE-2020338
  34. Lagomarsino A., Grego S., Kandeler E. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions // Pedobiologia. 2012. V. 55. P. 101–110. https://doi.org/10.1016/j.pedobi.2011.12.002
  35. Liang B.C., Balser T. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy // Nat. Rev. Microbiol. 2011. V. 9. P. 75. https://doi.org/10.1038/nrmicro2386-c1
  36. Liang B.C., McConkey B.G., Schoenau J., Curtin D., Campbell C.A., Moulin A.P., Lafond G.P., Brandt S.A., Wang H. Effect of tillage and crop rotations on the light fraction organic carbon mineralization in Chernozemic soils of Saskatchewan // Can. J. Soil Sci. 2003. V. 83. P. 65–72. https://doi.org/10.4141/S01-083
  37. Lu Q., An Z., Zhang B., Lu X., Mao X., Li J., Chang S., Liu Y., Fu X. Optimizing tradeoff strategies of soil microbial community between metabolic efficiency and resource acquisition along a natural regeneration chronosequence // Sci. Total Environ. 2024. V. 946. P. 174337. https://doi.org/10.1016/j.scitotenv.2024.174337
  38. Marx M-C., Wood M., Jarvis S.C. A microplate fluorometric assay for the study of enzyme diversity in soils // Soil Biol. Biochem. 2001. V. 33. P. 1633–1640. https://doi.org/10.1016/S0038-0717(01)00079-7
  39. Mayer M., Prescott C.E., Abaker W.E., Augusto L., Cécillon L., Ferreira G.W., Vesterdal L. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis // Forest Ecol. Managem. 2020. V. 466. P. 118–127. https://doi.org/10.1016/j.foreco.2020.118127
  40. Ovsepyan L., Kurganova I., L. de Gerenyu V., Kuzyakov Y. Conversion of cropland to natural vegetation boosts microbial and enzyme activities in soil // Sci. Total Environ. 2020. V. 743. P. 140829. https://doi.org/10.1016/j.scitotenv.2020.140829
  41. Ovsepyan L., Kurganova I., Lopes de Gerenyu V., Kuzyakov Ya. Recovery of organic matter and microbial biomass after abandonment of degraded agricultural soils: the influence of climate // Land Degradation and Development. 2019. V. 30. P. 1861–1874. https://doi.org/10.1002/ldr.3387
  42. Ovsepyan L.A., Kurganova I.N., Lopes de Gerenyu V.O., Rusakov A.V., Kuzyakov Ya.V. Changes in the Fractional Composition of Organic Matter in the Soils of the Forest–Steppe Zone during Their Postagrogenic Evolution // Eurasian Soil Sci. 2020. V. 53. P. 50–61. https://doi.org/10.1134/S1064229320010123
  43. Potapov P., Turubanova S., Hansen M.C., Tyukavina A., Zalles V., Khan A., Song X., Pickens A., Shen Q., Cortez J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century // Nature Food. 2022. V. 3. P. 19–28. https://doi.org/10.1038/s43016-021-00429-z
  44. Rasmussen C., Southard R.J., Horwath W.R. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils // Globe Change Biol. 2006. V. 12. P. 834–847. https://doi.org/10.1111/j.1365-2486.2006.01132.x
  45. Ren W., Banger K., Tao Bo., Yang J., Huang Y., Tian H. Global pattern and change of cropland soil organic carbon during 1901-2010: roles of climate, atmospheric chemistry, land use and management // Plant Soil Sci. Faculty Publ. 2020. V. 152. P. 59–69. https://doi.org/10.1016/j.geosus.2020.03.001
  46. Singh K., Singh B., Singh R.R. Changes in physico-chemical, microbial and enzymatic activities during restoration of degraded sodic land: ecological suitability of mixed forest over monoculture plantation // Catena. 2012. V. 96. P. 57–67. https://doi.org/10.1016/j.catena.2012.04.007
  47. Sollins P., Homann P., Caldwell B.A. Stabilization and destabilization of soil organic matter: mechanisms and controls // Geoderma. 1996. V. 74. P. 65–105.
  48. Sun T., Zhou J., Shi L., Feng W., Dippold M.A., Zang H., Kurganova I., Lopes de Gerenyu V., Kalinina O., Giani L., Kuzyakov Y. Microbial growth rates, carbon use efficiency and enzyme activities during post-agricultural soil restoration // Catena. 2022. V. 214. P. 106226. https://doi.org/10.1016/j.catena.2022.106226
  49. Walker T., Bais H., Grotewold E., Vivanco J. Root Exudation and Rhizosphere Biology // Plant Physiology. 2003. V. 132. P. 44–51. https://doi.org/10.1104/pp. 102.019661
  50. Wang X., Li Y., Wang L., Duan Y., Yao B., Chen Y., Cao W. Soil extracellular enzyme stoichiometry reflects microbial metabolic limitations in different desert types of northwestern China // Sci. Total Environ. 2023. V. 874. 162504. https://doi.org/10.1016/j.scitotenv.2023.162504
  51. Weissgerber M., Chanteloup L., Bonis A. Carbon stock increase during post-agricultural succession in central France: no change of the superficial soil stock and high variability within forest stages // New Forests. 2024. V. 55. P. 1533–1555. https://doi.org/10.1007/s11056-024-10044-y
  52. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, 2022.
  53. Wu D., Ren C., Ren D., Tian Y., Li Y., Wu C., Li Q. New insights into carbon mineralization in tropical paddy soil under land use conversion: coupled roles of soil microbial community, metabolism, and dissolved organic matter chemodiversity // Geoderma. 2023. V. 432. P. 116393. https://doi.org/10.1016/j.geoderma.2023.116393
  54. Yin H.J., Li Y.F., Xiao J., Xu Z.F., Cheng X.Y., Liu Q. Enhanced Root Exudation Stimulates Soil Nitrogen Transformations in a Subalpine Coniferous Forest under Experimental Warming // Glob. Chang. Biol. 2013. V. 19. P. 2158–2167. https://doi.org/10.1111/gcb.12161
  55. Zhang W., Xu Y., Gao D., Wang X., Liu W., Deng J., Han X., Yang G, Feng Y., Ren G. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China // Soil Biol. Biochem. 2019. V. 134. P. 1–14. https://doi.org/10.1016/j.soilbio.2019.03.017
  56. Zhou J., Gube M., Holz M., Song B., Shan I., Shi L.L., Kuzyakov Y., Dippold M.A., Pausch J. Ectomycorrhizal and non-mycorrhizal rhizosphere fungi increase root-derived C input to soil and modify enzyme activities: a 14C pulse labeling of Picea abies seedlings // Plant Cell. Environ. 2022. V. 45. P. 3122–3133. https://doi.org/10.1111/pce.14413
  57. Zhou J., Sun T., Shi L., Kurganova I., Lopes de Gerenyu V., Kalinina O., Giani L., Kuzyakov Y. Organic carbon accumulation and microbial activities in arable soils after abandonment: A chronosequence study // Geoderma. 2023. V. 435. P. 116496. https://doi.org/10.1016/j.geoderma.2023.116496
  58. Zhou J., Wen Y., Shi L., Marshall M.R., Kuzyakov Y., Blagodatskaya E., Zang H. Strong priming of soil organic matter induced by frequent input of labile carbon // Soil Biol. Biochem. 2021. V. 152. P. 108069. https://doi.org/10.1016/j.soilbio.2020.108069

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Reserves of carbon, Cstock (a), total nitrogen, Nstock (b) at depths of 0-5 and 5-10 cm and the content of dissolved C and N (c) at depths from 0 to 10 cm in the soils of arable land, 7 and 25-year-old deposits and natural meadows. The standard error was used to indicate the error limits on the graph.

Download (503KB)
3. Fig. 2. The content of Sorg (a) and Nc (b) in the fractions of PO, taking into account their mass (g/kg of soil), fPOM – free fraction (<1.6 g/cm3), oROM – occluded fraction (1.6–2.0 g/cm3), MAOM – organo-mineral fraction (>2.0 g/cm3) and the contribution of each fraction to the content of Sorghum and Nox in the soil.

Download (227KB)
4. Fig. 3. Basal respiration rate – DB (a), microbial biomass carbon pool – Smic/Sorghum (b), specific respiration per unit of soil carbon – DB/Sorghum (c), microbial metabolic coefficient – qCO2 (d), activity of β-glucosidase (e) and chitinase (f) in the soils of arable land, 7 and 25-year-old deposits and natural meadows at depths of 0-5 and 5-10 cm. The standard error was used to indicate the error limits on the graph. The significance of differences between depths at p = 0.05, a, b, c, d – the significance of differences between objects at p = 0.05.

Download (435KB)
5. Fig. 4. The relationship between the content of organic carbon oPOS (a) and total nitrogen oPON (b) in the occluded fraction of POV (the sum of oPOM with a density of <1.6, 1.6–1.8 and 1.8–2.0 g/cm3) and basal respiration rate (DB), the relationship between the content of organic carbon oPON (c) and total oPON(d) nitrogen in an oPOM subfraction with a density of less than 1.6 g/cm3 with a carbon content of microbial biomass (Smic).

Download (266KB)
6. Fig. 5. Sensitivity of soil properties in case of land use change (postagrogenic soil restoration). The dotted arrow is located in the direction of an increase in the content of Sorghum and soil properties in the process of postagrogenic development. The solid arrow is located in the direction of increasing the sensitivity of soil parameters to postagrogenic soil development. The soil properties located on the 1:1 line increase in proportion to the increase in the content of Sorghum and have the same sensitivity with soil carbon. If the increase in soil properties occurs faster than the Sorghum values (below the 1 :1 line), then the properties are more sensitive, and if slower (above the 1:1 line), then the properties are less sensitive compared to the Sorghum content.

Download (439KB)

Copyright (c) 2025 Russian Academy of Sciences