Новые данные по верхнеэдиакарской микробиоте Зуун-Арц (Завханский Террейн, Западная Монголия)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены проблематики и микрофоссилии из верхнеэдиакарских отложений свиты Зуун-Арц террейна Завхан Западной Монголии. Впервые из этих отложений описаны разнообразные органические остатки, сохраненные в минерализованных и органико-глинистых тафоценозах. Многочисленные трубчатые микрофоссилии интерпретированы как остатки чехлов гигантских сульфид-окисляющих тиаплоковых бактерий Candidatus Marithioploca araucae. Выделены автохтонные и аллохтонные компоненты микробиот, проанализирована фациально-экологическая структура палеобассейна.

Полный текст

Доступ закрыт

Об авторах

П. Ю. Петров

Геологический институт РАН

Автор, ответственный за переписку.
Email: petrov-geo-home@rambler.ru
Россия, Москва, 119017

Н. Г. Воробьева

Геологический институт РАН

Email: keltma@mail.ru
Россия, Москва, 119017

А. Л. Рагозина

Палеонтологический институт им. А.А. Борисяка РАН

Email: petrov-geo-home@rambler.ru
Россия, Москва, 117647

Список литературы

  1. Воробьева Н.Г., Петров П.Ю. Род Vendomyces Burzin и фациально-экологическая специфика старореченской микробиоты позднего венда Анабарского поднятия Сибири и ее стратиграфических аналогов // Палеонтол. журн. 2014. № 6. С. 80–92. https://doi.org/10.1134/S003103011406015X
  2. Воробьева Н.Г., Петров П.Ю. Микробиота баракунской свиты и биостратиграфическая характеристика дальнетайгинской серии: ранний венд Уринского поднятия Сибири // Стратигр. Геол. корреляция. 2020. Т. 28. № 4. С. 26–42. https://doi.org/10.1134/S0869593820040103
  3. Городничев В.И., Дробкова Е.Л. Обручевеллы из отложений олхинской и чорской свит Иркутского амфитеатра // Поздний докембрий и ранний палеозой Сибири. Сибирская платформа и ее обрамление. Новосибирск: ИГиГ СО АН СССР, 1991. С. 120–129.
  4. Заварзин Г.А. Лекции по природоведческой микробиологии. М.: Наука, 2003. 348 с.
  5. Кузнецов А.Б., Семихатов М.А., Горохов И.М. Возможности стронциевой изотопной хемостратиграфии в решении проблем стратиграфии верхнего протерозоя (рифея и венда) // Стратигр. Геол. корреляция. 2014. Т. 22. № 6. С. 3–25.
  6. Овчинникова Г.В., Кузнецов А.Б., Васильева И.М. и др. U-Pb возраст и Sr-изотопная характеристика надтиллитовых известняков неопротерозойской цаганоломской свиты, бассейн р. Дзабхан, Западная Монголия // Стратигр. Геол. корреляция. 2012. Т. 20. № 6. С. 28–40.
  7. Рагозина А.Л., Доржнамжаа Д., Сережникова Е.А. и др. Ассоциация макро- и микрофоссилий в вендских (эдиакарских) постледниковых отложениях Западной Монголии // Стратигр. Геол. корреляция. 2016. Т. 24. № 3. С. 27–37. https://doi.org/10.1134/S0869593816030059
  8. Рагозина А.Л., Доржнамжаа Д., Лужная (Сережникова) Е.А. и др. Цианобактериальные сообщества завханской ассоциации позднего венда и палеообстановки формирования вендо-кембрийских отложений Западной Монголии // Палеонтол. журн. 2022. Т. 56. № 4. С. 3–11. https://doi.org/10.1134/s0031030122040098
  9. Якшин М.С. Водорослевые микрофоссилии из опорного разреза венда Патомского нагорья (Сибирская платформа) // Новости палеонтологии и стратиграфии. Приложение к журналу “Геология и геофизика”. 2002. Т. 43. Вып. 5. С. 12–31.
  10. Якшин М.С., Лучинина В.А. Новые данные по ископаемым водорослям семейства Oscillatoriaceae // Пограничные отложения докембрия и кембрия Сибирской платформы. Новосибирск: Наука, 1981. С. 28–34.
  11. Adach N., Ezaki Y., Li J. et al. Late Ediacaran Boxonia-bearing stromatolites from the Gobi-Altay, western Mongolia // Precambr. Res. 2019. V. 334. 105470. https://doi.org/10.1016/j.precamres.2019.105470
  12. Anderson R.P., McMahon S., Bol U. et al. Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia // J. Syst. Palaeontol. 2017. V. 11. P. 947–968. http://dx.doi.org/10.1080/14772019.2016.1259272
  13. Arvestål E.H.M., Willman S. Organic-walled microfossils in the Ediacaran of Estonia: biodiversity on the East European platform // Precambr. Res. 2020. V. 341. P. 1–27. https://doi.org/10.1016/j.precamres.2020.105626
  14. Becker-Kerber B., de Barros G.E.B., Paim P.S.G. et al. In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil // Proc. Roy. Soc. B. Biol. Sci. 2021. V. 288. № 1942. P. 20202618. https://doi.org/10.1098/rspb.2020.2618
  15. Bengtson S., Sallstedt T., Belivanova V., Whitehouse M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae // PLoS Biol. 2017. V. 15. № 3. P. 2000735. https://doi.org/10.1371/journal.pbio.2000735
  16. Bold U., Ahm A.C., Schrag D.P. et al. Effect of dolomitization on isotopic records from Neoproterozoic carbonates in southwestern Mongolia // Precambr. Res. 2020. V. 350. P. 105902. https://doi.org/10.1016/j. precamres.2020.105902
  17. Bold U., Crowley J.L., Smith E.F. et al. Neoproterozoic to early Paleozoic tectonic evolution of the Zavkhan terrane of Mongolia: Implications for continental growth in the Central Asian orogenic belt // Lithosphere. 2016a. V. 8. № 6. P. 729–750. https://doi.org/10.1130/L549.1
  18. Bold U., Macdonald F.A., Smith E.F. et al. Elevating the Neoproterozoic Tsagaan-Olom Formation to a Group // Mongolian Geoscientist. 2013. V. 39. P. 89–94.
  19. Bold U., Smith E.F., Rooney A.D. et al. Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: the backbone for Cryogenian and early Ediacaran chemostratigraphic records // Amer. J. Sci. 2016b. V. 316. P. 1–63. https://doi.org/10.2475/01.2016.01
  20. Butterfield N.J. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion // Paleobiology. 2004. V. 30. P. 231–252. https://doi.org/10.1666/0094-8373(2004)030<0231:AVAFTM>2.0.CO;2
  21. Cunningham J.A., Vargas K., Liu P. et al. Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng’an Doushantuo biota // Proc. Roy. Soc. B. 2015. V. 282. P. 20151169. http://dx.doi.org/10.1098/rspb.2015.1169
  22. Dong L., Xiao S., Shen B., Zhou Ch. Silicified Horodyskia and Palaeopascichnus from Upper Ediacaran cherts in South China: Tentative phylogenetic interpretation and implications for evolutionary stasis // J. Geol. Soc. 2008. V. 165. № 1. P. 367–378. https://doi.org/10.1144/0016-76492007-074
  23. Dornbos S.Q., Oji T., Kanayama A., Gonchigdorj S. A new Burgess shale-type deposit from the Ediacaran of western Mongolia // Sci. Rep. 2016. V. 6. P. 1–5. https://doi.org/10.1038/srep23438
  24. Jørgensen B.B., Gallardo V.A. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles // FEMS Microbiol. Ecol. 1999. V. 28. P. 301–313. https://doi.org/10.1111/j.1574-6941.1999.tb00585.x
  25. Kendall B., Komiya T., Lyons T.W. et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period // Geochim. Cosmochim. Acta. 2015. V. 156. P. 173–193.
  26. Khomentovsky V.V., Gibsher A.S. The Neoproterozoic–Lower Cambrian in northern Govi-Altay, western Mongolia: Regional setting, lithostratigraphy, and biostratigraphy // Geol. Mag. 1996. V. 133. P. 371–390. https://doi.org/10.1017/S001675680000755X
  27. Kojima H., Teske A., Fukui M. Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany // Appl. Environ. Microbiol. 2003. V. 69. P. 390–398. https://doi.org/10.1128/AEM.69.1.390-398.2003
  28. Liu P., Moczydłowska M. Ediacaran microfossils from the Doushantuo Formation chert nodules in the Yangtze Gorges area, South China, and new biozones // Fossils and Strata. 2019. V. 65. P. 1–172. https://doi.org/10.1002/9781119564225.ch1
  29. Macdonald F.A., Jones D.S., Schrag D.P. Stratigraphic and tectonic implications of a newly discovered glacial diamictite–cap carbonate couplet in southwestern Mongolia // Geology. 2009. V. 37. P. 123–126. https://doi.org/10.1130/G24797A.1
  30. Maier S., Gallardo V.A. Thioploca araucae sp. nov. and Thioploca chileae sp. nov. // Intern. J. Syst. Bacteriol. 1984. V. 34. № 4. P. 414–418. https://doi.org/10.1099/00207713-34-4-414
  31. Oji T., Dornbos S.Q., Yada K. et al. Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution // Roy. Soc. Open Sci. 2018. V. 5. P. 172250. https://doi.org/10.1098/rsos.172250
  32. Ouyang Q., Zhou C.M., Pang K., Chen Z. Silicified Polybessurus from the Ediacaran Doushantuo Formation records microbial activities within marine sediments // Palaeoworld. 2022. V. 31. P. 1–13. https://doi.org/10.1016/j.palwor.2021.03.001
  33. Ragozina A.L., Dorjnamjaa D., Serezhnikova E.A. et al. Prasinophyte green algae Tasmanites and problematic fossils in the Upper Vendian biota of the Zavkhan Basin, Western Mongolia // Paleontol. J. 2016. V. 50. № 12. P. 1314–1320. https://doi.org/10.1134/S0031030116120157
  34. Rooney A.D., Strauss J.V., Brandon A.D., Macdonald F.A. A cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations // Geology. 2015. V. 43. № 5. P. 459–462. https://doi.org/10.1130/G36511.1
  35. Salman V., Amann R., Girnth A.C. et al. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria // Systematic and Applied Microbiol. 2011. V. 34. № 4. P. 243–259. https://doi.org/10.1016/j.syapm.2011.02.001
  36. Salman V., Bailey J.V., Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria // Antonie van Leeuwenhoek. 2013. V. 104. P. 169–186. https://doi.org/10.1007/s10482-013-9952-y
  37. Serezhnikova E.A., Ragozina A.L., Dorjnamjaa D., Zaitseva L.V. Fossil microbial communities in Neoproterozoic interglacial rocks of western Mongolia // Precambr. Res. 2014. V. 245. P. 66–79. https://doi.org/10.1016/j.precamres.2014.01.005
  38. Smith E.F., Macdonald F.A., Petach T.A. et al. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia // GSA Bull. 2015. V. 128. P. 442–468. https://doi.org/10.1130/B31248.1
  39. Topper T., Betts M.J., Dorjnamjaa D. et al. Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran–Cambrian boundary // Earth-Sci. Rev. 2022. V. 29. P. 104017. https://doi.org/10.1016/j.earscirev.2022.104017
  40. Willman S., Peel J.S. Problematic tubular fossils from the Portfjeld Formation (Ediacaran) of North Greenland // J. Paleontol. 2022. Online first 02 June 2022. https://doi.org/10.1017/jpa.2022.43
  41. Willman S., Slater B.J. Late Ediacaran organic microfossils from Finland // Geol. Mag. 2021. V. 158. P. 2231–2244. https://doi.org/10.1017/S0016756821000753
  42. Xiao S., Narbonne G.M. The Ediacaran Period // Geologic Time Scale / Eds. Gradstein F.M., Ogg J.G., Schmitz M.D., Ogg G.M. Oxford: Elsevier, 2020. V. 1. P. 521–561. https://www.doi.org/10.1016/B978-0-12-824360-2.00018-8
  43. Xiao S., Narbonne G.M., Zhou C. et al. Towards an Ediacaran Time Scale: Problems, protocols, and prospects // Episodes. 2016. V. 39. № 4. P. 540–555. https://doi.org/10.18814/epiiugs/2016/v39i4/103886
  44. Xiao S., Yuan X., Steiner M., Knoll A.H. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China // J. Paleontol. 2002. V. 76. P. 347–376. https://doi.org/10.1017/S0022336000041743
  45. Yang B., Steiner M., Schiffbauer J.D. et al. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids // Sci. Rep. 2020. V. 10 (535). https://doi.org/10.1038/s41598-019-56317-x
  46. Ye Q., An Z., Yu Y. et al. Phosphatized microfossils from the Miaohe Member of South China and their implications for the terminal Ediacaran biodiversity decline // Precambr. Res. 2023. V. 388. P. 107001. https://doi.org/10.1016/j.precamres.2023.107001
  47. Ye Q., Tong J., An Z. et al. A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China // J. Syst. Palaeontol. 2017. V. 17. P. 183–238. https://doi.org/10.1080/14772019.2017.1404499
  48. Zhang Y., Chang Sh., Feng Q., Zheng Sh. A diverse microfossil assemblage from the Ediacaran–Cambrian deep-water chert of the Liuchapo Formation in Guizhou Province, South China // J. Earth Sci. 2023. V. 34. № 2. P. 398–408. https://doi.org/10.1007/s12583-021-1485-0
  49. Zhu S., Zhu M., Knoll A.H. et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China// Nature Commun. 2016. V. 7. № 1. P. 11500. https://doi.org/10.1038/ncomms11500

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Географическая схема района работ и местоположения изученных разрезов (а); стратиграфическая схема и последовательность неопротерозойских отложений Завханского террейна (б); разрез нижней части свиты Зуун-Арц в долине р. Цаган-Гол и интервал отбора изученных проб (в). Обозначения свит: zv – завхан, mh – майхан-уул, th – тайшир, ol – ол, sg – шургат, za – Зуун-Арц, bg – баянгол. Изотопная Re-Os датировка в основании свиты тайшир по: Rooney et al. (2015).

Скачать (58KB)
3. Рис. 2. Минерализованные органические остатки, псевдофоссилии и проблематика в кремнях свиты Зуун-Арц: а, б – одиночные полые чехлы Siphonophycus внутри сильно разложенного цианобактериального мата с обилием органико-формирующих пелоидных частиц; в, г – Spumasina- и Navifusa-подобные органические пелоиды; д, е – поверхностные ооидные зерна с ядрами в виде округлых и эллипсоидальных фрагментов деструктурированных микробных матов; ж, з – мозаичные агрегаты плотно упакованных обломочных зерен кварца, имитирующие ячеистые клеточные структуры; и – кварцевые зерна, окаймленные оторочками сферолитов; к – прерывисто слоистые “червячковые” структуры с обилием пелоидных частиц; л–н – углеродистые компрессии нитчатых фоссилий на поверхностях аргиллитовых слоев.

Скачать (162KB)
4. Рис. 3. Микрофоссилии в аргиллитах свиты Зуун-Арц: а – обнажение аргиллитов с одиночными горизонтами кремней и фосфоритов (показаны стрелками) в базальной части свиты Зуун-Арц, долина р. Цаган-Гол; б–н – нитчатые микрофоссилии: б, з–н – в петрографических шлифах строго параллельно слоистости; в–ж – на поверхности аргиллитовых слоев. Масштабная линейка на (и) равна 200 мкм.

Скачать (175KB)
5. Рис. 4. Размеры микрофоссилий свиты Зуун-Арц: а – ширина нитей, наблюдаемая в шлифах (n = 30 – черные нити, n = 80 – красные нити); б – гистограммы распределения: 1 – ширина нитей в шлифах (n = 30), 2 – диаметр трубок в мацерированных препаратах (n = 254), 3 – диаметр спирали Obruchevella ditissima (n = 13); в – соотношение диаметра трубки с диаметром спирали O. ditissima.

Скачать (27KB)
6. Рис. 5. Химический и минеральный состав нитевидных микрофоссилий и вмещающего аргиллита: а, б – фотографии нити в шлифе при комбинированном освещении (а) и в проходящем свете при скрещенных николях (б); в – средний химический состав нити (1), ее внешней оболочки (2) и вмещающего аргиллита (3) по данным микрозондового анализа без учета органического углерода; г – минеральный состав аргиллита по данным рентген-дифракционного анализа (ориентированный препарат, излучение CuKα): Cl – Fe-хлорит, M – иллит + обломочная слюда, Q – кварц.

Скачать (51KB)
7. Таблица 1

Скачать (172KB)

© Российская академия наук, 2024