Влияние породы на реакции акватермолиза в лабораторных условиях (обзор)
- Авторы: Luis M.S.1, Paola A.L.1, Adan Y.L.1
-
Учреждения:
- Universidad Industrial de Santander-UIS
- Выпуск: Том 63, № 1 (2023)
- Страницы: 3-19
- Раздел: Статьи
- URL: https://transsyst.ru/0028-2421/article/view/655632
- DOI: https://doi.org/10.31857/S002824212301001X
- EDN: https://elibrary.ru/TSTJNQ
- ID: 655632
Цитировать
Аннотация
Обзор посвящен наиболее используемому способу повышения нефтеотдачи пласта на нефтяных месторождениях - закачке водяного пара в пласт (т. наз. акватермролиз). Основная цель акватермолиза - снижение вязкости нефти, являющееся результатом химического взаимодействия нефти и пара при температурах от 200 до 325°C. К сожалению, исследования этого процесса, ранее описанные в литературе, были сосредоточены в основном на взаимодействии «флюид-флюид». Благодаря четкой систематике, настоящий обзор литературных данных направлен на понимание синергизма, возникающего при взаимодействии «порода-флюид», и посвящен взаимодействию фрагментов горных пород, минералов или пористых сред с нефтью при закачке пара в пласт. В результате анализа научных трудов был сделан вывод о том, что добавление различных минералов и горных пород меняет характер взаимодействия компонентов, так как вызывает каталитический эффект, выражающийся в изменении физических и химических свойств нефти. Увеличение объемов добычи нефти и газов при различных рабочих параметрах закачки свидетельствует о преимуществах участия горных пород в данном процессе.
Об авторах
Miguel Salas-Chia Luis
Universidad Industrial de Santander-UIS
Email: luis.salas@correo.uis.edu.co
A.A678, Bucaramanga, Colombia
Andrea Le�n Naranjo Paola
Universidad Industrial de Santander-UIS
Email: luis.salas@correo.uis.edu.co
A.A678, Bucaramanga, Colombia
Yovani Le�n Berm�de Adan
Universidad Industrial de Santander-UIS
Автор, ответственный за переписку.
Email: luis.salas@correo.uis.edu.co
A.A678, Bucaramanga, Colombia
Список литературы
- Guo K., Li H., Yu Z. In-situ heavy and extra-heavy oil recovery: A review // Fuel. 2016. V. 185. P. 886-902. https://doi.org/10.1016/j.fuel.2016.08.047
- Li Y., Wang Z., Hu Z., Xu B., Li Y., Pu W., Zhao J. A review of in situ upgrading technology for heavy crude oil // Petroleum. 2020. V. 7. P. 117-122. https://doi.org/10.1016/j.petlm.2020.09.004 http://www.keaipublishing.com/en/journals/petroleum
- Dong X., Liu H., Chen Z., Wu K., Lu N., Zhang Q. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection // Appl. Energy. 2019. V. 239. P. 1190-1211. https://doi.org/10.1016/j.apenergy.2019.01.244
- Babadagli T., Philosophy of EOR // J. Petrol. Sci. Eng. 2020. V. 188. P. 106930. https://doi.org/10.1016/j.petrol.2020.106930
- Peñuela-Muñoz J.H. Crudos pesados Crudos pesados: La realidad del sector hidrocarburos de Colombia // Revista Virtual Pro, 2017. V. 184. P. 1-3, https://www.revistavirtualpro.com/editoriales/20170501-ed.pdf
- León Naranjo P.A., Bernal Correa D.L., Muñoz Navarro S.F., Ordoñez Rodríguez A. Inyección de vapor en medianos. Recuperación y rentabilidad // Revista Fuentes: El Reventón Energético. 2015. V. 12. P. 21-31. https://doi.org/10.18273/revfue.v13n1-2015002
- Naranjo Suárez C., Muñoz Navarro S.F., Zapata Arango J. Factibilidad Experimental De La Inyección De Agua En Las Arenas Mugrosa Del Campo Lisama // Revista Fuentes: El Reventón Energético. 2010. V. 8. P. 11. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/1147
- Zhao D.W., Gates I.D. On hot water flooding strategies for thin heavy oil reservoirs // Fuel. 2015. V. 153. P. 559-568. https://doi.org/10.1016/j.fuel.2015.03.024
- Zhong L.G., Liu Y.J., Fan H.F., Jiang S.J. Liaohe extra-heavy crude oil underground aquathermolytic treatments using catalyst and hydrogen donors under steam injection conditions // SPE Int. Improved Oil Recovery Conf. in Asia Pacific, Kuala Lumpur, Malaysia, 2003. P. 6. http://www.onepetro.org/doi/10.2118/84863-MS
- Hyne J.B., Clark P.D., Clarke R.A., Koo J., Greidanus J.W. Aquathermolysis of heavy oils // INTEVEP, 1982. V. 2. P. 87-94. https://www.osti.gov/etdeweb/biblio/5969666
- Kapadia P.R., Kallos M.S., Gates I.D. A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen // Fuel Process. Technol. 2015. V. 131. P. 270-289. https://doi.org/10.1016/j.fuproc.2014.11.027
- Hamedi-Shokrlu Y., Babadagli T. Kinetics of the in-situ upgrading of heavy oil by nickel nanoparticle catalysts and its effect on cyclic-steam-stimulation recovery factor // SPE Res. Eval. & Eng. 2014. V. 17. P. 355-364. http://www.onepetro.org/doi/10.2118/170250-PA
- Wang Y., Chen Y., He J., Li P., Yang C. Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+ // Energy Fuels. 2010. V. 24. P. 1502-1510. https://doi.org/10.1021/ef901339k
- Xu Y., Ayala-Orozco C., Wong M.S. Heavy oil viscosity reduction using iron III para-toluenesulfonate hexahydrate // SPE Western Regional Meeting, Garden Grove, California, USA, 2018, April 22-26, 2018. https://doi.org/10.2118/190020-MS
- Chávez Morales S.M. Experimental and numerical simulation of combined enhanced oil recovery with in situ, University of Calgary, 2016.
- Nuñez-Méndez K.S., Salas-Chia L.M., Molina D.V., Muñoz Navarro S.F., León Naranjo P.A., León Bermúdez A.Y. Effect of the catalytic aquathermolysis process on the physicochemical properties of a Colombian crude oil // Energy Fuels. 2021. V. 35. № 6. P. 5231-5240. https://doi.org/10.1021/acs.energyfuels.0c04142
- Cochrane Handbook for Systematic Reviews of Interventions. Eds. Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019.
- Rivas O.R., Campos R.E., Borges L.G. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes // SPE Annual Technical Conf. and Exhibition, Houston, 1988, October 2-5, p. 9. http://www.onepetro.org/doi/10.2118/18076-MS
- Brons G., Siskin M. Bitumen chemical changes during aquathermolytic treatments of Cold Lake tar sands // Fuel. 1994. V. 73. P. 183-191. https://doi.org/10.1016/0016-2361(94)90112-0
- Belgrave J.D.M., Moore R.G., Ursenbach M.G. Gas evolution from the aquathermolysis of heavy oils // Can. J. Chem. Eng. 1994. V. 72. P. 511-516. https://doi.org/10.1002/cjce.5450720317
- Karacan C.Ö., Okandan E. Change of physical and thermal decomposition properties of in situ heavy oil with steam temperature // Pet. Sci. Technol. 1997. V. 15. P. 429-443. https://doi.org/10.1080/10916469708949668
- Xu H.H., Okazawa N., Moore R.G., Mehta S.A., Laureshen C.J., Ursenbach M.G., Mallory D. In situ upgrading of heavy oil // Petroleum Society's Canadian Int. Petroleum Conf., Calgary, 2000. P. 1-12. https://doi.org/10.2118/2000-030
- Xu H.H., Okazawa N., Moore R.G., Mehta S.A., Laureshen C.J., Ursenbach M.G., Mallory D. In situ upgrading of heavy oil // J. Can. Pet. Technol. 2001. V. 40. P. 45-53. https://doi.org/10.2118/01-08-04
- Ovalles C., Vallejos C., Vásquez T., Martinis J., Perez-Perez A., Cotte E., Castellanos L., Rodriguez H. Extra-heavy crude oil downhole upgrading process using hydrogen donors under steam injection conditions // Int. Thermal Operations and Heavy Oil Symp., Porlamar, Venezuela, 2001. P. 1-6. https://doi.org/10.2118/69692-MS
- Fan H.-F., Liu Y.-J., Zhong L.-G. Studies on the synergetic effects of mineral and steam on the composition changes of heavy oils // Energy Fuels. 2001. V. 15. P. 1475-1479. https://doi.org/10.1021/ef0100911
- Fan H. The effects of reservoir minerals on the composition changes of heavy oil during steam stimulation // J. Can. Pet.Technol. 2003. V. 42. P. 11-14. https://doi.org/10.2118/03-03-TN1
- Fan H., Zhang Y., Lin Y. The catalytic effects of minerals on aquathermolysis of heavy oils // Fuel. 2004. V. 83. P. 2035-2039. https://doi.org/10.1016/j.fuel.2004.04.010
- Lamoureux-Var V., Lorant F. H2S artificial formation as a result of steam injection for EOR: a compositional kinetic approach // SPE/PS-CIM/CHOA Int. Thermal Operations and Heavy Oil Symp., Calgary, Canada, 2005. P. 1-4. https://doi.org/10.2118/97810-MS
- Ovalles C., Rodríguez H. Extra heavy crude oil downhole upgrading using hydrogen donors under cyclic steam injection conditions: Physical and numerical simulation studies // J. Can. Pet. Technol. 2008. V. 47. P. 43-51. https://doi.org/10.2118/08-01-43
- Mohammad A.A., Mamora D.D. In situ upgrading of heavy oil under steam injection with tetralin and catalyst // SPE/PS/CHOA Int. Thermal Operations and Heavy Oil Symp., Calgary, Canada, 2008. P. 1-11. https://doi.org/10.2118/117604-MS
- Mohammad A.A. Experimental investigation of in situ upgrading of heavy oil by using a hydrogen donor and catalyst during steam injection, Texas A&M University, 2008.
- Zhang X., Liu Y., Fan Y., Che H. Effects of reservoir minerals and chemical agents on aquathermolysis of heavy oil during steam injection // China Petroleum Processing and Petrochemical Technology. 2010. V. 12. P. 25-31. http://www.chinarefining.com/EN/abstract/abstract31.shtml
- Hashemi R., Pereira P. Experimental study of simultaneous athabasca bitumen recovery and upgrading using ultradispersed catalysts injection // SPE Canada Unconventional Resources Conf., Calgary, Canada, 2011. P. 1-13. https://doi.org/10.2118/149257-MS
- Chen Q.Y., Liu Y.J., Zhao J. Intensified viscosity reduction of heavy oil by using reservoir minerals and chemical agents in aquathermolysis // Adv. Mat. Res. 2011. V. 236-238. P. 839-843. https://doi.org/10.4028/www.scientific.net/AMR.236-238.839
- Xu H., Pu C. Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic // J. Fuel Chem. Technol. 2011. V. 39. P. 606-610. https://doi.org/10.1016/S1872-5813(11)60037-6
- Hashemi R. In situ upgrading and recovery enhancement of athabasca bitumen by ultra-dispersed nanocatalysts, University of Calgary, 2013.
- Dong L., Cai Y.C., Liu Y.J., Xu K.M., Chen D.X., Kong X.W., Zhao F. Laboratory experimental research on promoting aquathermolysis of heavy oil with the NaNO2/NH4Cl exothermic system // Adv. Mat. Res. 2013. V. 772. P. 297-302. https://doi.org/10.4028/www.scientific.net/AMR.772.297
- Montgomery W., Court R.W., Rees A.C., Sephton M.A. High temperature reactions of water with heavy oil and bitumen: Insights into aquathermolysis chemistry during steam-assisted recovery // Fuel. 2013. V. 113. P. 426-434. https://doi.org/10.1016/j.fuel.2013.05.098
- Montgomery W., Sephton M.A., Court R.W., Watson J.S., Zeng H., Rees A. Quantitative laboratory assessment of aquathermolysis chemistry during steam-assisted recovery of heavy oils and bitumen, with a focus on sulfur // SPE Heavy Oil Conf., Calgary, Canada, 2013. P. 1-12. http://www.onepetro.org/doi/10.2118/165404-MS
- Qin W., Xiao Z. The researches on upgrading of heavy crude oil by catalytic aquathermolysis treatment using a new oil-soluble catalyst // Adv. Mat. Res. 2013. V. 608-609. P. 1428-1432. https://doi.org/10.4028/www.scientific.net/AMR.608-609.1428
- Hamedi Shokrlu Y., Babadagli T. In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: A study on in-situ catalysis and catalyst transportation // SPE Res. Eval. & Eng. 2013. V. 16. P. 333-344. http://www.onepetro.org/doi/10.2118/146661-PA
- Osgouei Y.T. An experimental study on steam distillation of heavy oils during thermal recovery. Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle East Technology Middle East Technical University, 2013.
- Montgomery W., Sephton M.A., Watson J.S., Zeng H. The effects of minerals on heavy-oil and bitumen chemistry when recovered by steam-assisted methods // SPE Heavy Oil Conf., Calgary, Canada, 2014. P. 1-7. https://doi.org/10.2118/170035-MS
- Hamedi Shokrlu Y., Babadagli T. Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications // J. Pet. Sci. Eng. 2014. V. 119. P. 210-220. https://doi.org/10.1016/j.petrol.2014.05.012
- Petrukhina N.N., Kayukova G.P., Romanov G.V., Tumanyan B.P., Foss L.E., Kosachev I.P., Musin R.Z., Ramazanova A.I., Vakhin A.V. Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aquathermolysis // Chem. Tech. Fuels Oil+. 2014. V. 50. P. 315-326. https://doi.org/10.1007/s10553-014-0528-y
- Afzal S., Nikookar M., Ehsani M.R., Roayaei E. An experimental investigation of the catalytic effect of Fe2O3 nanoparticle on steam injection process of an Iranian reservoir // Iranian J. Oil & Gas Sci. Technol. 2014. V. 3. P. 27-36. https://doi.org/10.22050/IJOGST.2014.6033
- Farooqui J., Babadagli T., Li H.A. Improvement of the recovery factor using nano-metal particles at the late stages of cyclic steam stimulation // SPE Canada Heavy Oil Technical Conf., Calgary, Canada, 2015. P. 1-17. http://www.onepetro.org/doi/10.2118/174478-MS
- Butron J., Bryan J., Yu X., Kantzas A. Production of gases during thermal displacement tests // SPE Heavy Oil Conf., Calgary, Canada, 2015. P. 1-20. https://doi.org/10.2118/174464-MS
- Shuwa S.M., Al-Hajri R.S., Mohsenzadeh A., AlWaheibi Y.M., Jibril B.Y. Heavy crude oil recovery enhancement and in-situ upgrading during steam injection using Ni-Co-Mo dispersed catalyst // SPE EOR Conf. at Oil and Gas West Asia, Muscat, Oman 2016. P. 1-17. https://doi.org/10.2118/179766-MS
- Lin R., Song D., Wang X., Yang D. Experimental determination of in situ hydrogen sulfide production during thermal recovery processes // Energy Fuels. 2016. V. 30. P. 5323-5329. https://doi.org/10.1021/acs.energyfuels.5b02646
- Chavez-Morales S., Pereira-Almao P. Experimental and numerical simulation of combined enhanced oil recovery with in situ upgrading in a naturally fractured reservoir // SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conf., Lima, Peru, 2016. https://doi.org/10.2118/181207-MS
- Franco C., Cardona L., Lopera S., Mejia J., Cortés F. Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts // SPE Improved Oil Recovery Conf., Tulsa, Oklahoma, USA, 2016. https://doi.org/10.2118/179699-MS
- Cardona Rojas L. Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades, Universidad Nacional de Colombia, 2017.
- Kayukova G.P., Foss L.E., Feoktistov D.A., Vakhin A.V., Petrukhina N.N., Romanov G.V. Transformations of hydrocarbons of Ashal'hinskoe heavy oil under catalytic aquathermolysis conditions // Pet. Chem. 2017. V. 57. P. 657-665. https://doi.org/10.1134/S0965544117050061
- Montgomery W., Watson J.S., Lewis J.M.T., Zeng H., Sephton M.A. Role of minerals in hydrogen sulfide generation during steam-assisted recovery of heavy oil // Energy Fuels. 2018. V. 32. P. 4651-4654. https://doi.org/10.1021/acs.energyfuels.7b03566
- Kayukova G.P., Mikhailova A.N., Kosachev I.P., Feoktistov D.A., Vakhin A.V., Arbuzov A.E. Conversion of heavy oil with different chemical compositions under catalytic aquathermolysis with an amphiphilic Fe-Co-Cu catalyst and kaolin // Energy Fuels. 2018. V. 32. P. 6488-6497. https://doi.org/10.1021/acs.energyfuels.8b00347
- Foss L., Petrukhina N., Kayukova G., Amerkhanov M., Romanov G., Ganeeva Y. Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates // J. Pet. Sci. Eng. 2018. V. 169. P. 269-276. https://doi.org/10.1016/j.petrol.2018.04.061
- Tavakkoli Osgouei Y., Parlaktuna M. Effects of minerals on steam distillation during thermal heavy-oil recovery: An experimental investigation // Energy Sources, Part A. 2018. V. 40. P. 662-672. https://doi.org/10.1080/15567036.2018.1454547
- Yi S., Babadagli T., Li H.A. Use of nickel nanoparticles for promoting aquathermolysis reaction during cyclic steam stimulation // Int. Petroleum Technology Conf., 2016, Bangkok, Thailand. http://www.onepetro.org/doi/10.2523/IPTC-18876-MS; SPE J., 2018. V. 23. P. 145-156. https://doi.org/10.2118/186102-pa
- Mukhamatdinov I.I., Sitnov S.A., Slavkina O.V., Bugaev K.A., Laikov A.V., Vakhin A.V. The aquathermolysis of heavy oil from Riphean-Vendian complex with iron-based catalyst: FT-IR spectroscopy data // Pet. Sci. Technol. 2019. V. 37. P. 1410-1416. https://doi.org/10.1080/10916466.2019.1587464
- Elahi S.M., Khoshooei M.A., Scott C.E., Ortega L.C., Chen Z., Pereira-Almao P. Enhanced recovery of heavy oil by a nano-catalytic in-situ upgrading process. Society of Petroleum Engineers - SPE Europec Featured at 81st EAGE Conf. and Exhibition, 2019, London, England, UK. P. 1-11. https://doi.org/10.2118/195474-MS
- Castro Y., Sánchez D., Viloria A. Effect of mineral compounds of sands on acid gases generation at steam injection conditions // Revista Ingeniería UC. 2019. V. 26. P. 23-30. http://servicio.bc.uc.edu.ve/ingenieria/revista/v26n1/art03.pdf
- Vakhin A.V., Aliev F.A., Mukhamatdinov I.I., Sitnov S.A., Sharifullin A.V., Kudryashov S.I., Afanasiev I.S., Petrashov O.V., Nurgaliev D.K. Catalytic aquathermolysis of Boca de Jaruco heavy oil with nickel-based oil-soluble catalyst // Processes. 2020. V. 8. № 5. P. 532. https://doi.org/10.3390/pr8050532
- Zhang J., Han F., Yang Z., Zhang L., Wang X., Zhang X., Jiang Y., Chen K., Pan H., Lin R. Significance of aquathermolysis reaction on heavy oil recovery during the steam-assisted gravity drainage process // Energy Fuels. 2020. V. 34. P. 5426-5435. https://doi.org/10.1021/acs.energyfuels.9b04004
- Sitnov S., Mukhamatdinov I., Aliev F., Khelkhal M.A., Slavkina O., Bugaev K. Heavy oil aquathermolysis in the presence of rock-forming minerals and iron oxide (II, III) nanoparticles // Pet. Sci. Technol. 2020. V. 38. P. 574-579. https://doi.org/10.1080/10916466.2020.1773498
- Nasyrova Z., Aliev A., Affane B., Popkov A., Proshchekalnikov D., Bashkirtseva N. Conversion of heavy crude oil with carbonate rock in the medium of water superheated steam // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 516. P. 012031. https://doi.org/10.1088/1755-1315/516/1/012031
- Ivanova I., Kutlizamaev R., Safin B., Grishko A., Sitnov S., Slavkina O., Shchekoldin K. Influence of metal oxides and their precursors on the composition of final products of aquathermolysis crude oil // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 516. P. 01237. https://doi.org/10.1088/1755-1315/516/1/012037
- Petrov S., Lahova A., Sitnov S., Slavkina O., Shchekoldin K. Hydrothermal influence of heavy oil in the presence of minerals of carbonate rock // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 516. P. 012035. https://doi.org/article/10.1088/1755-1315/516/1/012035
- Petrov S.M., Safiulina A.G., Bashkirtseva N.Y., Lakhova A.I., Islamova G.G. Influence of metal oxides and their precursors on the composition of final products of aquathermolysis of raw ashalchin oil // Processes. 2021. V. 9. № 2. 19 pp. https://doi.org/10.3390/pr9020256
- Kayukova G.P., Mikhailova A.N., Kosachev I.P., Nasyrova Z.R., Gareev B.I., Vakhin A.V. Catalytic Hydrothermal Conversion of Heavy Oil in the Porous Media // Energy Fuels. 2021. V. 35. P. 1297-1307. https://doi.org/10.1021/acs.energyfuels.0c03546
- Qu X., Li Y., Li S., Wang J., Xu H., Li Z. Thermal cracking, aquathermolysis, and their upgrading effects of Mackay River oil sand // J. Pet. Sci. Eng. 2021. V. 201. P. 108473. https://doi.org/10.1016/j.petrol.2021.108473
- Ahmadi Khoshooei M., Elahi S.M., Carbognani L., Scott C.E., Pereira-Almao P. Activity assessment of NiMo bimetallic nanocatalyst in presence and absence of steam in in situ upgrading technology (ISUT) // Fuel. 2021. V. 288. P. 119664. https://doi.org/10.1016/j.fuel.2020.119664
- Suhag A., Ranjith R., Balaji K., Peksaglam Z., Malik V., Zhang M., Biopharm F., Putra D., Energy R, Wijaya Z., Dhannoon D., Temizel C., Aminzadeh F. Optimization of steamflooding heavy oil reservoirs // SPE Western Regional Meeting, 2017, Bakersfield, California. P. 1-35. https://doi.org/10.2118/185653-MS
- Zhao P., Li C., Wang C., Yang M. The mechanism of H2S generation in the recovery of heavy oil by steam drive // Pet. Sci. Technol. 2016. V. 34. P. 1452-1461. https://doi.org/10.1080/10916466.2016.1204314
- Ren R., Liu H., Chen Y., Li J., Chen Y. Improving the aquathermolysis efficiency of aromatics in extra-heavy oil by introducing hydrogen-donating ligands to catalysts // Energy Fuels. 2015. V. 29. P. 7793-7799. https://doi.org/10.1021/acs.energyfuels.5b01256
- Fingas M. Introduction to Oil Chemistry and Properties, In: Oil Spill Science and Technology. Ed. Fingas M., 2010, Chapter 3. P. 51-59.
Дополнительные файлы
