Research on Nano Inhibition and Plugging Potassium Amine Polysulfonate Drilling Fluid System to Prevent Wellbore Instability in Deep Complex Formations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The wellbore instability caused by complex strata is a common problem in drilling engineering, which not only causes economic losses, but also reduces the field drilling efficiency. This paper has taken Block A of Junggar Basin as an example to explore the causes of wellbore instability in complex strata and establish corresponding solutions. Studying the core samples in this area and analyzing the logging data, it is concluded that the micro-fractures developed in the rock layer of the block provide natural channels for the entry of filtrate. At the same time, the water-sensitive clay minerals in the formation have hydration after encountering the filtrate. By optimizing the composition, the corresponding nano-strong inhibition and strong plugging potassium amine polysulfonate drilling fluid system (NPAP-2) was established. The overall use of asphalt anti-sloughing agent, nano-and micro-scale cracks (gaps) for physical plugging, wetting inversion control surface water absorption, chemical inhibition of internal hydration. The performance test shows that the HTHP water loss of the drilling fluid system is less than 10 mL, the recovery rate of rock sample is more than 86%, the viscosity is reasonable, the expansion rate is more than 89%, and the filtration loss is reduced from 8.0 to 5.0 mL. The results show that the NPAP-2 can reduce the liquid activity to enhance the inhibition, effectively improve the settlement stability of drilling fluid, reduce the filtration and ensure the wellbore stability.

About the authors

Yang Shuo

School of Petroleum Engineering, Changzhou University, Wujin District

Email: petrochem@ips.ac.ru
213164, Changzhou, China

Deng Song

School of Petroleum Engineering, Changzhou University, Wujin District

Email: dengsong@cczu.edu.cn
213164, Changzhou, China

Zhang Xiaopeng Yan Yixin

School of Petroleum Engineering, Changzhou University, Wujin District

Email: petrochem@ips.ac.ru
213164, Changzhou, China

Hao Hongda

School of Petroleum Engineering, Changzhou University, Wujin District

Email: petrochem@ips.ac.ru
213164, Changzhou, China

Wang Caibao

School of Petroleum Engineering, Changzhou University, Wujin District

Email: petrochem@ips.ac.ru
213164, Changzhou, China

Wang Lei

Sinopec Research Institute of Petroleum Engineering, Chaoyang District

Author for correspondence.
Email: petrochem@ips.ac.ru
100083, Beijing, China

References

  1. Zheng L., Chen B., Zhang Z., Tang J., Sun H. Anti-collapse mechanism of CBM fuzzy-ball drilling fluid // Natural Gas Industry B. 2016. V. 3. P. 152-157. https://doi.org/10.1016/j.ngib.2016.03.011
  2. Yang L., Xie C., Ao T., Cui K., Jiang G., Bai B., Zhang Y., Yang J., Wang X., Tian W. Comprehensive evaluation of self-healing polyampholyte gel particles for the severe leakoff control of drilling fluids // J. Petrol. Sci. Eng. 2022. V. 212. P. 110249. https://doi.org/10.1016/j.petrol.2022.110249
  3. Kai C.-M., Zhang F.-J., Cheng C.-L., Chen Q.-B. Design synthesis and performance of anti-collapse drilling polymer mud with higher stability // Pigment & Resin Technology. 2022. V. 51. P. 101-109. https://doi.org/10.1108/PRT-10-2020-0111
  4. Sun W.J., Tian G.Q., Huang H.J., Lu G.M., Ke C.Y., Hui J.F. Synthesis and characterisation of a multifunctional oil-based drilling fluid additive // Environ. Earth Sci. 2018. V. 77. P. 793. https://doi.org/10.1007/s12665-018-7982-5
  5. You F-c., Zhou S-s., Ke D., Huang Y. Effect of a novel lubricant embedded with alcohol ether, amide and amine motifs for silicate drilling fluid on bit balling and lubrication: an experimental study // Arab. J. Sci. Eng. 2022. https://doi.org/10.1007/s13369-022-06730-8
  6. Jiang G., Ning F., Zhang L., Tu Y. Effect of agents on hydrate formation and low-temperature rheology of polyalcohol drilling fluid // J. Earth Sci. 2011. V. 22. P. 652. https://doi.org/10.1007/s12583-011-0216-3
  7. Zhang G., He S., Tang M., Kong L. The mechanism and countermeasures of inclined well wellbore instability in Dibei deep coal seam // J. Pet. Explor. Prod. Technol. 2022. V. 1. P. 16. https://doi.org/10.1007/s13202-022-01483-4
  8. Xiong Z., Tao S., Li X., Shan W., Dong H. Development and application of anti-collapse & anti-drag agent for drilling fluid // Procedia Engineering. 2014. V. 73. P. 55-62. https://doi.org/10.1016/j.proeng.2014.06.170
  9. Xionghu Z., Egwu S.B., Jingen D., Liujie M., Xiangru J. Synthesis of asphalt nanoparticles and their effects on drilling fluid properties and shale dispersion // SPE Drill & Compl. 2022. V. 37. № 01. P. 67-76. https://doi.org/10.2118/208589-PA
  10. Wang B., Sun J., Shen F., Li W., Zhang W. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures // Natural Gas Industry B. 2020. V. 7. P. 680-688. https://doi.org/10.1016/j.ngib.2020.04.008
  11. Qu Y.Z., Tian K.P., Deng M.Y., Wang R., Xie G. Environmental protection performance of anti-collapse agents with different hydrophobic chain lengths // Chem. Technol. Fuels Oils. 2020. V. 56. P. 363-372. https://doi.org/10.1007/s10553-020-01147-1
  12. Qu Y.Z., Tian K.P., Deng M.Y., Wang R., Xie G. Influence of various hydrocarbon groups on the effectiveness and environmental characteristics of anti-collapse agent for drilling fluids // Chem. Technol. Fuels Oils. 2020. V. 56. P. 420-428. https://doi.org/10.1007/s10553-020-01153-3
  13. Wang S., Shu Z., Chen L., Yan P., Li B., Yuan C., Jian L. Low temperature green nano-composite vegetable-gum drilling fluid // Appl. Nanosci. 2019. V. 9. P. 1579-1591. https://doi.org/10.1007/s13204-019-01033-1
  14. Duarte A.C.R., Ribeiro P.R., Kim N.R., Mendes J.R.P., Policarpo N.A., Vianna A.M. An experimental study of gas solubility in glycerin based drilling fluid applied to well control // J. Petrol. Sci. Eng. 2021. V. 207. P. 109194. https://doi.org/10.1016/j.petrol.2021.109194
  15. Paixão M.V.G., da Silva Fernandes R., de Souza E.A., de Carvalho Balaban R. Thermal energy storage technology to control rheological properties of drilling fluid // J. Mol. Liq. 2021. V. 341. P. 116931. https://doi.org/10.1016/j.molliq.2021.116931
  16. Zhu W., Zheng X., Shi J., Wang Y. A high-temperature resistant colloid gas aphron drilling fluid system prepared by using a novel graft copolymer xanthan gum-AA/AM/AMPS // J. Petrol. Sci. Eng. 2021. V. 205. P. 108821. https://doi.org/10.1016/j.petrol.2021.108821
  17. Mech D., Das B.M., Sunil A., Areekkan M., Imaad S. Formulation of a rice husk based non-damaging drilling fluid and its effect in shale formations // Energy and Climate Change. 2020. V. 1. P. 100007. https://doi.org/10.1016/j.egycc.2020.100007
  18. Murtaza M., Tariq Z., Zhou X., Al-Shehri D., Mahmoud M., Kamal M.S. Okra as an environment-friendly fluid loss control additive for drilling fluids: Experimental & modeling studies // J. Petrol. Sci. Eng. 2021. V. 204. P. 108743. https://doi.org/10.1016/j.petrol.2021.108743
  19. Rezaei A., Shadizadeh S.R. State-of-the-art drilling fluid made of produced formation water for prevention of clay swelling: Experimental investigation // Chem. Eng. Res. Des. 2021. V. 170. P. 350-365. https://doi.org/10.1016/j.cherd.2021.04.012
  20. Ettehadi A., Ülker C., Altun G. Nonlinear viscoelastic rheological behavior of bentonite and sepiolite drilling fluids under large amplitude oscillatory shear // J. Petrol. Sci. Eng. 2022. V. 208. Pt. B. P. 109210. https://doi.org/10.1016/j.petrol.2021.109210
  21. Gao X., Zhong H., Zhang X., Chen A., Qiu Z., Huang W. Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids //Petrol. Sci. 2021. V. 18. № 4. P. 1163-1181. https://doi.org/10.1016/j.petsci.2021.05.005
  22. Shen X., Jiang G., Li X., He Y., Yang L., Cui K., Li W. Application of carboxylated cellulose nanocrystals as eco-friendly shale inhibitors in water-based drilling fluids // Colloids Surf. A. Physicochem. Eng. Asp. 2021. V. 627. P. 127182. https://doi.org/10.1016/j.colsurfa.2021.127182
  23. He J., Lu Y., Tang J., Ou C. Effect of seepage flow on gas loss during the removal of shale core immersed in a drilling fluid // J. Nat. Gas Sci. Eng. 2021. V. 94. P. 104080. https://doi.org/10.1016/j.jngse.2021.104080
  24. Bavoh C.B., Adam J.M., Lal B. Specific heat capacity of xanthan gum/PAC polymer-based drilling fluids: An experimental and correlation study // Materials Today: Proceedings. 2021. V. 57. Pt. 3. P. 1002-1007. https://doi.org/10.1016/j.matpr.2021.08.028
  25. Zhao K., Fan J., Yu B., Han J.Y., Xu Y.H., Gao S.H. Research progress of wellbore stability in hard brittle shale // Oil Drilling and Production Technology. 2016. V. 38. № 03. P. 277-285. https://doi.org/10.13639/j.odpt.2016.03.001
  26. Liu X.L., You F.C., Wu S.Z., Yan R., Deng C. Mechanism analysis of shale wellbore instability and drilling fluid countermeasures // Contemporary Chemical Industry. 2020. V. 49. № 01. P. 129-133. http://dx.doi.org/10.3969/j.issn.1671-0460.2020.01.032
  27. Chen Z.X., Lan F., Liang W., Zhang S.Q. Research and application of anti-high-temperature and anti-collapse drilling fluid in deep well in niudong area of North China // Oilfield Chem. 2019. V. 36. № 1. P. 1-6. https://doi.org/10.19346/j.cnki.1000-4092.2019.01.001
  28. Zheng S. Sedimentary pattern of the shallow-water delta in the sangonghe formation of central junggar basin and its significance for hydrocarbon exploration // Special Oil and Gas Reservoirs. 2019. V. 26. № 01. P. 87-93. https://doi.org/10.3969/j.issn.1006-6535.2019.01.015
  29. Tan S.Q. Definition of hydrocarbon accumulation key period in central area of Junggar Basin and its petroleum geology significance // Fault-block Oil and Gas Field. 2013. V. 20. № 5. P. 551-555. https://doi.org/10.6056/dkyqt201305002; http://www.dkyqt.com/#/digest?ArticleID=3180
  30. Vivas C., Salehi S. Rheological investigation of effect of high temperature on geothermal drilling fluids additives and lost circulation materials // Geothermics. 2021. V. 96. P. 102219. https://doi.org/10.1016/j.geothermics.2021.102219
  31. Xiao Y., Yang H.Y., Li C.C. Study on drilling fluid system for Shahejie Formation of paleogene in offshore oilfield // Contemporary Chemical Industry. 2018. V. 47. № 02. P. 316-319. https://doi.org/10.3969/j.issn.1671-0460.2018.02.026
  32. Wang X.B. Application of strong-inhibition water-based drilling fluid in shale gas horizontal wells of Changning Block // Nature Gas Exploration and Development. 2017. V. 40. № 01. P. 93-100. http://dx.doi.org/10.12055/gaskk.issn.1673-3177.2017.01.016
  33. Li Y., Yang G.X., Fan Z.G. The research on polyamine and anti-sloughing polymer drilling fluid and its application in Sichuan // J. Oil Gas Technol. 2014. V. 36. № 12, P. 137-142. https://doi.org/10.3969/j.issn.1000-9752.2014.12.033
  34. Chen Y.J., Deng C.G., Ma T.S. A risk assessment method of wellbore instability based on the reliability theory // Nature Gas Industry. 2019. V. 39. № 11. P. 97-104. http://dx.doi.org/10.3787/j.issn.1000-0976.2019.11.013
  35. Kong Y., Yang X.H., Xu J. Study and application of a high temperature drilling fluid with strong plugging capacity // Drill. Fluid Complet. Fluid. 2016. V. 33. № 06. P. 17-22. http://dx.doi.org/10.3969/j.issn.1001-5620.2016.06.003
  36. Test method for physical and chemical properties of shale by drilling fluid: SY/T 5613-2016 [S], 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences