Carbon Dioxide Utilization Using Plasma Reactor Packed with Magnesia-Ceria Catalysts with Various Morphology
- Authors: Golubev O.V.1, Il'chuk P.S.1, Sadovnikov A.A.1, Maksimov A.L.1
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Issue: Vol 63, No 5 (2023)
- Pages: 720-734
- Section: Articles
- URL: https://transsyst.ru/0028-2421/article/view/655589
- DOI: https://doi.org/10.31857/S0028242123050106
- EDN: https://elibrary.ru/RZWDAI
- ID: 655589
Cite item
Abstract
A series of CeO2–MgO catalysts with different molar ratio was prepared for the plasma-activated CO2 decomposition to CO and O2. The catalysts were synthesized by the sol-gel method and characterized by physicochemical methods (XRD, SEM, XPS, low-temperature N2 adsorption, CO2-TPD). The highest CO2 conversion (31%) was achieved in the presence of the catalyst with the highest CeO2 content. The addition of H2 into a CO2 decomposition system was also studied. No CO2 methanation occurred in the presence of synthesized catalysts, though an increase in the CO2-to-CO conversion was observed due to an increase of a discharge power in the presence of molecular hydrogen.
About the authors
O. V. Golubev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: golubev@ips.ac.ru
119991, Moscow, Russia
P. S. Il'chuk
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
A. A. Sadovnikov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
A. L. Maksimov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
References
- Schlager S., Fuchsbauer A., Haberbauer M., Neuge-bauer H., Sariciftci N.S. Carbon dioxide conversion to synthetic fuels using biocatalytic electrodes // J. Mater. Chem. A. 2017. V. 5. P. 2429-2443. https://doi.org/10.1039/C6TA07571A
- Chen Y., Guan B., Wu X., Guo J., Ma Z., Zhang J., Jiang X., Bao S., Cao Y., Yin C., Ai D., ChenY., Lin H., Huang Z. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO2 photocatalytic reduction conversion // Environ. Sci. Pollut. Res. 2023. V. 30. P. 11246-11271. https://doi.org/10.1007/s11356-022-24686-y
- Li J., Wang L., Cao Y., Zhang C., He P. Li H. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels // Chin. J. Chem. Eng. 2018. V. 26. P. 2266-2279. https://doi.org/10.1016/j.cjche.2018.07.008
- Liu B., Qin J., Shi J., Jiang J., Wu X., He Z. New perspectives on utilization of CO2 sequestration technologies in cement-based materials // Constr. Build. Mater. 2021. V. 272. ID 121660. https://doi.org/10.1016/j.conbuildmat.2020.121660
- Saravanan A., Deivayanai V.C., Senthil Kumar P., Rangasamy G., Varjani S. CO2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society // Bioresour. Technol. 2022. V. 363. ID 127982. https://doi.org/10.1016/j.biortech.2022.127982
- Snoeckx R., Bogaerts A. Plasma technology - a novel solution for CO2 conversion? // Chem. Soc. Rev. 2017. V. 46. ID 5805. https://doi.org/10.1039/C6CS00066E
- Adwek G., Shen B., Craven M., Wang Y., Kang D., Wu C., Tu X. A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization // Renew. Sust. Energ. Rev. 2021. V. 135. ID 109702. https://doi.org/10.1016/j.rser.2020.109702
- Chen G., Snyders R., Britun N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding // J. CO2 Util. 2021. V. 49. ID 101557. https://doi.org/10.1016/j.jcou.2021.101557
- Debjyoti R., Ye P., Yu J.C., Song C. Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels // Catal. Today. 2022. V. 423. ID 113973. https://doi.org/10.1016/j.cattod.2022.12.004
- Kozák T., Bogaerts A. Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model // Plasma Sources Sci. Technol. 2015. V. 24. ID 015024. http://dx.doi.org/10.1088/0963-0252/24/1/015024
- Lebedev Yu.A., Shakhatov V.A. Decomposition of carbon dioxide in microwave discharges (an analytical review) // Russ. J. Appl. Chem. 2022. V. 95. P. 1-20. http://doi.org/10.1134/S1070427222010018
- Ong M.Y., Nomanbhay S., Kusumo F., Show P.L. Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: a review // J. Clean. Prod. 2022. V. 336. ID 130447. https://doi.org/10.1016/j.jclepro.2022.130447
- Nunnally T., Gutsol K., Rabinovich A., Fridman A., Gutsol A., Kemoun A. Dissociation of CO2 in a low current gliding arc plasmatron // J. Phys. D: Appl. Phys. 2011. V. 44. ID 274009. https://doi.org/10.1088/0022-3727/44/27/274009
- Liu J.-L., Wang X., Li X.-S., Likozar B., Zhu A.-M. CO2 conversion, utilisation and valorisation in gliding arc plasma reactors // J. Phys. D. Appl. Phys. 2020. V. 53. ID 253001. http://dx.doi.org/10.1088/1361-6463/ab7c04
- Zhang H., Li L., Xu R., Huang J., Wang N., Li X., Tu X. Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor // Waste Dispos. Sustain. Energy. 2020. V. 2. P. 139-150. https://doi.org/10.1007/s42768-020-00034-z
- Bogaerts A., Kozak T., van Laer K., Snoeckx R. Plasma-based conversion of CO2: current status and future challenges // Faraday Discuss. 2015. V. 183. ID 217. https://doi.org/10.1039/C5FD00053J
- Ray D., Subrahmanyam Ch. CO2 decomposition in a packed DBD plasma reactor: influence of packing materials // RSC Adv. 2016. V. 6. P. 39492-37499. https://doi.org/10.1039/C5RA27085E
- Michielsen I., UytdenhouwenY., Pype J., Michielsen B., Mertens J., Reniers F., Meynen V., Bogaerts A. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis // Chem. Eng. J. 2017. V. 326. P. 477-488. https://doi.org/10.1016/j.cej.2017.05.177
- Xu S., Whitehead C.J., Martin P.A. CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor: the effect of dilution by Ar and N2 // Chem. Eng. J. 2017. V. 327. P. 764-773. https://doi.org/10.1016/j.cej.2017.06.090
- Lu N., Sun D., Zhang C., Jiang N., Shang K., Bao X., Li J., Wu Y. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes // J. Phys. D: Appl. Phys. 2018. V. 51. ID 094001. https://doi.org/10.1088/1361-6463/aaa919
- Ashford B., Wang Y., Poh C.-K., Chen L., Tu X. Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures // Appl. Catal. B 2020. V. 276. ID 119110. https://doi.org/10.1016/j.apcatb.2020.119110
- Wang L., Du X., Yi Y., Wang H., Gul M., Zhu Y., Tu X. Plasma-enhanced direct conversion of CO2 to CO over oxygen-deficient Mo-doped CeO2 // Chem. Commun. 2020. V. 56. P. 14801-14804. https://doi.org/10.1039/D0CC06514E
- Golubev O.V., Maksimov A.L. Plasma-assisted catalytic decomposition of carbon dioxide // Russ. J. Appl. Chem. 2022. V. 95. P. 617-630. https://doi.org/10.1134/S1070427222050019
- Duan X., Hu Z., Li Y., Wang B. Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor // AIChE J. 2015. V. 61. P. 898-903. https://doi.org/10.1002/aic.14682
- Mei D., He Y., Liu S., Yan J., Tu X. Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments // Plasma Process. Polym. 2016. V. 13. P. 544-556. https://doi.org/10.1002/ppap.201500159
- Wang B., Li X., Wang X., Zhang B. Effect of filling materials on CO2 conversion with a dielectric barrier discharge reactor // J. Environ. Chem. Eng. 2021. V. 9. ID 106370. https://doi.org/10.1016/j.jece.2021.106370
- Ebrahimi P., Kumar A., Khraisheh M.A. A review of CeO2 supported catalysts for CO2 reduction to CO through the reverse water gas shift reaction // Catalysts. 2022. V. 12. ID 1101. https://doi.org/10.3390/catal12101101
- Ijaz H., Gazali T., Shakeel A., Chennampilly U.A., Alasiri H., Alhooshani K. A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: uncovering, influencing, and tuning strategies // Int. J. Hydrog. Energy. 2023. V. 48. P. 24663-24696. https://doi.org/10.1016/j.ijhydene.2022.08.086
- Ahn S.-Y., Jang W.-J., Shim J.-O., Jeon B.-H., Roh H.-S. CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties // Catal. Rev. Sci. Eng. 2023. P. 1-84. https://doi.org/10.1080/01614940.2022.2162677
- Lebedev Yu.A., Golubev O.V., Batukaev T.S., Maximov A.L. Decomposition of CO2 in a barrier discharge in the presence of cerium oxide catalysts // Tech. Phys. Lett. 2023. V. 49. P. 4-6. https://doi.org/10.21883/TPL.2023.05.56015.19521
- Golubev O., Maximov A. Hybrid plasma-catalytic CO2 dissociation over basic metal oxides combined with CeO2 // Processes. 2023. V. 11. ID 1553. https://doi.org/10.3390/pr11051553
- Jin S., Bang G., Liu L., Lee C.-H. Synthesis of mesoporous MgO-CeO2 composites with enhanced CO2 capture rate via controlled combustion // Microporous Mesoporous Mater. 2019. V. 288. ID 109587. https://doi.org/10.1016/j.micromeso.2019.109587
- Jin S., Ko K.-J., Lee C.-H. Direct formation of hierarchically porous MgO-based sorbent bead for enhanced CO2 capture at intermediate temperatures // Chem. Eng. J. 2019. V. 371. P. 64-77. https://doi.org/10.1016/j.cej.2019.04.020
- Pawar A.A., Lee D., Kim H. Understanding the synergy between MgO-CeO2 as an effective promoter and ionic liquids for high dimethyl carbonate production from CO2 and methanol // Chem. Eng. J. 2020. V. 395. ID 124970. https://doi.org/10.1016/j.cej.2020.124970
- Ruhaimi A.H, Aziz M.A.A. Fabrication of mesoporous CeO2-MgO adsorbent with diverse active sites via eggshell membrane-templating for CO2 capture // Appl. Phys. A 2022. V. 128. ID 29. https://doi.org/10.1007/s00339-021-05182-5
- Holub M. On the measurement of plasma power in atmospheric pressure DBD plasma reactors // Int. J. Appl. Electromagn. Mech. 2012. V. 39. P. 81-87. https://doi.org/10.3233/JAE-2012-1446
- Xu C., Shi S., Dong Q., Zhu S., Wang Y., Zhou H., Wang X., Zhu L., Zhang G., Xu D. Citric-acid-assisted sol-gel synthesis of mesoporous silicon-magnesium oxide ceramic fibers and their adsorption characteristics // Ceram. Int. 2020. V. 46. P. 10105-10114. https://doi.org/10.1016/j.ceramint.2019.12.279
- Parameswaram G., Rao P.S.N., Srivani A., Nageswara Rao G., Lingaiah N. Magnesia-ceria mixed oxide catalysts for the selective transesterification of glycerol to glycerol carbonate // Mol. Catal. 2018. V. 451. P. 135-142. https://doi.org/10.1016/j.mcat.2017.12.006
- Zheng X., Li Y., Zhang L., Shen L., Xiao Y., Zhang Y., Jiang L. Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation // Appl. Catal. B. 2019. V. 252. P. 98-110. https://doi.org/10.1016/j.apcatb.2019.04.014
- Zhang Y., Wang H.-Y., Zhang Y.-R., Bogaerts A. Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas // Plasma Sources Sci. Technol. 2017. V. 26. ID 054002. https://doi.org/10.1088/1361-6595/aa66be
- Горбунов Н.А., Мельников А.С. Влияние молекулярного азота на подвижность электронов в смеси аргона и оптически возбужденных паров натрия // Журнал технической физики. 1999. № 4. С. 361-366
- Gorbunov N.A., Mel'nikov A.S. Effect of molecular nitrogen on the electron mobility in a mixture of argon and optically excited sodium vapor // Tech. Phys. 1999. V. 44. P. 361-366. https://doi.org/10.1134/1.1259302.
- Смирнов С.А., Титов В.А., Шикова Т.Г., Овцын А.А., Кадников Д.В. Влияние газообразных продуктов гетерогенных реакций на параметры плазмы аргона // Прикладная физика. 2016. № 4. С. 43-48.
- Aerts R., Snoeckx R., Bogaerts A. In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma // Plasma Process. Polym. 2014. V. 11. P. 985-992. https://doi.org/10.1002/ppap.201400091
- Морозов С.А., Малков А.А., Малыгин А.А. Синтез пористого оксида магния термическим разложением основного карбоната магния // Журн. общей химии. 2003. Т. 73. № 1. С. 37-42
- Morozov S.A., Malkov A.A., Malygin A.A. Synthesis of porous magnesium oxide by thermal decomposition of basic magnesium carbonate // Russ. J. Gen. Chem. 2001. V. 73. P. 37-42. https://doi.org/10.1023/a:1023466200445.
Supplementary files
