Comparative Genome Analysis and Assessment of the Functional Properties of Streptococcus thermophilus Strains

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Streptococcus thermophilus are commonly used as starter cultures. Search for new safe strains with desired industrial and probiotic properties is an important issue. Complete genome sequencing was carried out, and the main genome characteristics of two new strains, S. thermophilus 16t (Str16t) and 159 (Str159), were determined. In silico analysis of the genomes revealed the absence of transmissible antibiotic resistance genes, virulence genes associated with pathogenicity, and integrated plasmids; gene clusters encoding class I and class II bacteriocin were found. In vitro tests showed phosphatase, peptidase, β-galactosidase, and esterase activity of both strains, as well as their ability to ferment glucose, lactose, sucrose, and ribose. Strain Str16t metabolized mannose as well. Str16t and Str159 are promising strains for application as starter and probiotic cultures.

Texto integral

Acesso é fechado

Sobre autores

K. Moiseenko

Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences

Email: fedorova_tv@mail.ru
Rússia, Moscow

O. Glazunova

Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences

Email: fedorova_tv@mail.ru
Rússia, Moscow

O. Savinova

Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences

Email: fedorova_tv@mail.ru
Rússia, Moscow

T. Fedorova

Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences

Autor responsável pela correspondência
Email: fedorova_tv@mail.ru
Rússia, Moscow

Bibliografia

  1. Evivie S. E., Li B., Ding X., Meng Y., Yu S., Du J., Xu M., Li W., Jin D., Huo G., Liu F. Complete genome sequence of Streptococcus thermophilus KLDS3.1003, a strain with high antimicrobial potential against foodborne and vaginal pathogens // Front. Microbiol. 2017. V. 8. Art. 1238. https://doi.org/10.3389/fmicb.2017.01238
  2. Roux E., Nicolas A., Valence F., Siekaniec G., Chuat V., Nicolas J., Le Loir Y., Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties // BMC Genomics. 2022. V. 23. Art. 210. https://doi.org/10.1186/s12864-022-08459-y
  3. Sebastián-Nicolas J.L., Contreras-López E., Ramírez-Godínez J., Cruz-Guerrero A.E., Rodríguez-Serrano G.M., Añorve-Morga J., Jaimez-Ordaz J., Castañeda-Ovando A., Pérez-Escalante E., Ayala-Niño A., González-Olivares L. G. Milk fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: proteolytic profile and ACE-inhibitory activity // Fermentation. 2021. V. 7. Art. 215. https://doi.org/10.3390/fermentation7040215
  4. Soltani S., Hammami R., Cotter P. D., Rebuffat S., Ben Said L., Gaudreau H., Bédard F., Biron E., Drider D., Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations // FEMS Microbiol. Rev. 2021. V. 45. https://doi.org/10.1093/femsre/fuaa039
  5. Uriot O., Denis S., Junjua M., Roussel Y., Dary-Mourot A., Blanquet-Diot S. Streptococcus thermophilus: from yogurt starter to a new promising probiotic candidate? // J. Funct. Foods. 2017. V. 37. P. 74‒89.
  6. Vitetta L., Llewellyn H., Oldfield D. Gut dysbiosis and the intestinal microbiome: Streptococcus thermophilus a key probiotic for reducing uremia // Microorganisms. 2019. V. 7. Art. 228. https://doi.org/10.3390/microorganisms7080228
  7. Zhao R., Chen Z., Liang J., Dou J., Guo F., Xu Z., Wang T. Advances in genetic tools and their application in Streptococcus thermophiles // Foods. 2023. V. 12. Art. 3119. https://doi.org/10.3390/foods12163119

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Anvi'o diagram representing the comparative genomic analysis of S. thermophilus strains 16t (Str16t) and S. thermophilus 159 (Str159). Gene clusters (two inner rings) were ordered (inner dendrogram) according to their presence (solid) or absence (grey) in the genomes of each strain. The presence of functional annotations in each gene cluster is indicated in green on the ring, signed according to annotation type

Baixar (353KB)
3. Fig. 2. Resistance of strains of S. thermophilus to different groups of antibiotics: β-lactams (Amp - ampicillin, Amx - amoxicillin, Oxa - oxacillin, PenG - penicillin G); Fos - fosfomycin; Aminoglycosides (Gen - gentamicin, KanA - kanamycin A, Neo - neomycin); Tetracyclines (Dox - doxycycline, Tet - tetracycline); Macrolides (Azm - azithromycin); Lincosamides (Lcm - lincomycin); Amphenicols (Chl - chloramphenicol); Fluoroquinolones (Lev - levofloxacin, Pef - pefloxacin)

Baixar (166KB)
4. Fig. 3. Biochemical characterisation of S. thermophilus 16t and 159: a - evaluation of carbohydrate fermentation ability (green colour - positive reaction, red - negative reaction); b - enzymatic profile

Baixar (234KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024