Morphological characteristics of Aspergillus niger under growth with tributylphosphate
- Авторлар: Mindubaev A.Z.1, Chaporgina A.A.2, Myazin V.A.2,3, Babynin E.V.4, Balymova E.S.1
-
Мекемелер:
- Kazan National Research Technological University
- Institute of North Industrial Ecology Problems of the Kola Science Centre of Russian Academy of Sciences
- RUDN University
- Kazan Science Center of the Russian Academy of Sciences
- Шығарылым: Том 59, № 1 (2025)
- Беттер: 63-73
- Бөлім: ФИЗИОЛОГИЯ, БИОХИМИЯ, БИОТЕХНОЛОГИЯ
- URL: https://transsyst.ru/0026-3648/article/view/681167
- DOI: https://doi.org/10.31857/S0026364825010089
- EDN: https://elibrary.ru/srkatq
- ID: 681167
Дәйексөз келтіру
Аннотация
Tributylphosphate finds industrial application as an extractant of metal salts from ore minerals, and is produced in large quantities. Due to the widespread use of tributylphosphate, the problem of environmental pollution with this compound and its negative impact on living organisms arises. It was shown that culture media with tributylphosphate had a strong toxic effect on Paramecium caudatum and Artemia salina. A solution to this problem could be its biodegradation – enzymatic hydrolysis to inorganic phosphates. Until now, the known biodegraders of tributylphosphate were mainly bacteria. However, fungi are apparently also capable of biodegradation of this substance. The object of study was two strains of the filamentous fungus Aspergillus niger, which had previously shown the ability to use white phosphorus as a substrate. As a result of the experiments, the possibility of growth of two A. niger strains on a medium with tributylphosphate was shown. For strain F-4815D, the addition of tributylphosphate had a negative effect at the stage of conidiophores formation and spore maturation. Strain F-4815D was also characterized by a lower radial growth rate and a smaller colony diameter with the addition of tributylphosphate than strain F-4816D. Both strains were capable of growth on medium without phosphates. For strain F-4815D, the presence of tributylphosphate in the medium without inorganic phosphorus enhanced the toxic effect, which was reflected in a decrease in the diameter of colonies and hyphae, a decrease in the radial growth rate and a later appearance of conidiophores. Strain F-4816D is more resistant to tributylphosphate, and the exclusion of inorganic phosphates from the medium stimulated the growth of the fungus, which may indicate the ability of this strain to biologically degrade TBP and reduce the toxicity.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Mindubaev
Kazan National Research Technological University
Хат алмасуға жауапты Автор.
Email: mindubaev-az@yandex.ru
Ресей, Kazan, 420015
A. Chaporgina
Institute of North Industrial Ecology Problems of the Kola Science Centre of Russian Academy of Sciences
Email: chaporginaa@mail.ru
Ресей, Apatity, 184209
V. Myazin
Institute of North Industrial Ecology Problems of the Kola Science Centre of Russian Academy of Sciences; RUDN University
Email: myazinv@mail.ru
Ресей, Apatity, 184209; Moscow, 117198
E. Babynin
Kazan Science Center of the Russian Academy of Sciences
Email: edward.b67@mail.ru
Ресей, Kazan, 420111
E. Balymova
Kazan National Research Technological University
Email: ilc2013@inbox.ru
Ресей, Kazan, 420015
Әдебиет тізімі
- Ahire K.C., Kapadnis B.P., Kulkarni G.J. et al. Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures. Biodegradation. 2011. V. 23 (1). P. 165–176. https://doi.org/10.1007/s10532-011-9496-7
- Bergman A., Ryden A., Law R.J. et al. A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame-retardants and some characteristics of the chemicals. Environ. 2012. V. 49. P. 57–82. https://doi.org/10.1016/j.envint.2012.08.003
- Berne C., Allainmat B., Garcia D. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria. Biotechnology Lett. 2005. V. 27 (8). P. 561–566. https://doi.org/10.1007/s10529-005-2882-7
- Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D. et al. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013. V. 11 (3). P. 315–335. https://doi.org/10.2174/1570159X11311030006
- Ding J., Deng T., Xu M. et al. Residuals of organophosphate esters in foodstuffs and implication for human exposure. Environm. Poll. 2018. V. 233. P. 986–991. https://doi.org/10.1016/j.envpol.2017.09.092
- Greget R., Dadak S., Barbier L. et al. Modeling and simulation of organophosphate-induced neurotoxicity: prediction and validation by experimental studies. Neurotoxicology. 2016. V. 54. P. 140–152. https://doi.org/10.1016/j.neuro.2016.04.013
- Hou R., Xu Y., Wang Z. Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere. 2016. V. 153. P. 78–90. https://doi.org/10.1016/j.chemosphere.2016.03.003
- Kovalev N.G., Eselevich M.M., Maksimovskiy N.S. et al. Instructions for laboratory control of wastewater treatment facilities on livestock farms. Determination of nutrients. Analysis of sediments and silt. Pt 3. Moscow, 1984. (In Russ.)
- Kulkarni S.V., Markad V.L., Melo J.S. et al. Biodegradation of tributyl phosphate using Klebsiella pneumonia sp. S3. Appl. Microbiol. Biotechnol. 2014. V. 98 (2). P. 919–929. https://doi.org/10.1007/s00253-013-4938-2
- Liu J., Lin H., Yingbo D. et al. Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings. Environm. Poll. 2019. V. 250. P. 284–291. https://doi.org/10.1016/j.envpol.2019.03.127
- Mincher B.J., Mezyk S.P., Martin L.R. A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J. Physical Chemistry A. 2008. V. 112. P. 6275–6280. https://doi.org/10.1021/jp802169v
- Mindubaev A.Z., Fedosimova S.V., Grigorieva T.V. et al. The effect of white phosphorus on the cellular morphology and protein profile of Aspergillus niger fungal strains. Prikladnaya khimiya i biotekhnologiya. 2021a. V. 11 (1). P. 69– 79. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-1-69-79
- Mindubaev A.Z., Babynin E.V., Bedeeva E.K. et al. Biological degradation of yellow (white) phosphorus, a compound of first class hazard. Russian J. Inorganic Chem. 2021b. V. 66. P. 1239–1244. https://doi.org/10.1134/S0036023621080155
- Mindubaev A.Z., Galimova A.R., Kuznetsova O.N. et al. Biotransformation of red phosphorus into phosphates using Aspergillus niger. Vestnik tekhnologicheskogo universiteta. 2023. V. 26 (10). P. 41–45. (In Russ.) https://doi.org/10.55421/1998-7072 2023 26 10 41
- Mindubaev, A.Z., Kuznetsova, S.V., Evtyugin, V.G. et al. Effect of white phosphorus on the survival, cellular morphology, and proteome of Aspergillus niger. Appl. Biochem. Microbiol. 2020. V. 56. P. 194–201. https://doi.org/10.1134/S0003683820020118
- Nancharaiah Y.V., Kiran K.R.G., Krishna Mohan T.V. et al. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms. J. Hazardous Materials. 2015. V. 283. P. 705–711. https://doi.org/10.1016/j.jhazmat.2014.09.065
- Powers J.C., Asgian J.L., Ekici O.D. et al. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Reviews. 2002. V. 102 (12). P. 4639–4750. https://doi.org/10.1021/cr010182v
- Qin W., Ren L., Xu Y. et al. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system. J. Central South University. 2012. V. 19. P. 1711–1717. https://doi.org/10.1007/s11771-012-1197-9
- Rangu S.S., Basu B., Muralidharan B. et al. Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS. Appl. Microbiol. Biotechnol. 2016. V. 100. P. 461–468. https://doi.org/10.1007/s00253-015-6979-1
- Symonds M.R.E., Moussalli A., Elgar M.A. The evolution of sex pheromones in an ecologically diverse genus of flies. Biological J. Linnean Soc. 2009. V. 97 (3). P. 594–603. https://doi.org/10.1111/j.1095-8312.2009.01245.x
- Takahashi S., Katanuma H., Abe K. et al. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Appl. Microbiol. Biotechnol. 2017. V. 101. P. 2153–2162. https://doi.org/10.1007/s00253-016-7991-9
- Terekhova V.A., Isakova E.F., Samoilova T.A. et al. Methodology for determining the toxicity of highly mineralized surface and waste waters, soils and wastes based on the survival rate of brackish-water crustaceans Artemia salina L. Moscow, 2009. (In Russ.)
- Thomas R.A.P., Macaskie L.E. Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution. Environm. Sci. Technol. 1996. V. 30 (7). P. 2371–2375. https://doi.org/10.1021/es950861l
- Waaijers S.L., Kong D.G., Hendriks H.S. et al. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants. Reviews of Environmental Contamination and Toxicology. Springer, New York, 2013. V. 222. P. 1–71. https://doi.org/10.1007/978-1-4614-4717-7_1
- Xiang D.F., Bigley A.N., Ren Z. et al. Interrogation of the substrate profile and catalytic properties of the phosphotriesterase from Sphingobium sp. strain TCM1: an enzyme capable of hydrolyzing organophosphate flame-retardants and plasticizers. Biochemistry. 2015. V. 54. P. 7539–7549. https://doi.org/10.1021/acs.biochem.5b01144
- Zakirov R.K., Akhmadullina F. Yu., Verbenko I.V. et al. Enzymatic diagnostics of industrial sludge in the processes of extended aeration of wastewater. Vestnik Kazanskogo texnologicheskogo universiteta. 2009. V. 2. P. 33–40. (In Russ.)
- Закиров Р.К., Ахмадуллина Ф.Ю., Вербенко И.В. и др. Ферментативная диагностика промышленных илов в процессах продленной аэрации сточных вод // Вестник Казанского технологического университета. 2009. № 2. С. 33–40.
- Ковалев Н.Г., Еселевич М.М., Максимовский Н.С. и др. Инструкция по лабораторному контролю очистных сооружений на животноводческих комплексах. Часть III. Определение биогенных веществ. Анализ осадков и ила. М.: “Колос”. 1984. 55 с.
- Миндубаев А.З., Галимова А.Р., Кузнецова О.Н. и др. Биотрансформация красного фосфора в фосфаты с помощью Aspergillus niger // Вестник технологического университета. 2023. Т. 26. № 10. С. 41–45.
- Миндубаев А.З., Федосимова С.В., Григорьева Т.В. и др. Влияние белого фосфора на клеточную морфологию и белковый профиль штаммов гриба Aspergillus niger // Известия вузов. Прикладная химия и биотехнология. 2021. Т. 11. № 1. С. 69–79.
- Терехова В.А., Исакова Е.Ф., Самойлова Т.А. и др. Методика определения токсичности высокоминерализованных поверхностных и сточных вод, почв и отходов по выживаемости солоноватоводных рачков Artemia salina L. М.: МГУ. 2009. 28 с.
Қосымша файлдар
