Annealing effect of Ca3TaGa3Si2O14 catangasite crystals on their optical activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spectral dependences of transmission and absorption in the wavelength range of 200–2500 nm were measured for Ca3TaGa3Si2O14 crystals cut perpendicular to the optical axis in the initial state (without annealing) and after isothermal annealing in vacuum and in air. It was found that annealing in vacuum leads to a decrease, and annealing in air leads to an increase in the intensity of absorption bands. A spectrophotometric method for measuring and calculating the specific rotation angle ρ of the plane of polarization of light in gyrotropic crystals from the transmission coefficient spectra at different angles between the polarizer and the analyzer is considered. The transmission spectra were normalized in order to eliminate shifts in the spectra associated with measurement features. Spectral dependences of the values of ρ for all three samples, which are approximated by the extended Drude formula, are obtained; the influence of the annealing atmosphere on the values of the coefficients of this formula is established.

Full Text

Restricted Access

About the authors

T. G. Golovina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119333

A. F. Konstantinova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119333

V. M. Kasimova

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119049

E. V. Zabelina

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119049

N. S. Kozlova

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119049

G. Yu. Deev

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow, 119049

References

  1. Милль Б.В., Буташин А.В., Ходжабагян Г.Г. и др. // Докл. АН СССР. 1982. Т. 264. № 6. С. 1385.
  2. Каминский А.А. Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. 271 с.
  3. Клименкова А.А., Максимов Б.А., Молчанов В.Н. и др. // Кристаллография. 2007. Т. 52. № 2. С. 238.
  4. Roshchupkin D.V., Irzhak D.V., Emelin E.V. et al. // 2012 IEEE Int. Ultrasonics Symp., Dresden, Germany, 2012. P. 2730. https://doi.org/10.1109/ULTSYM.2012.0684
  5. Sakharov S., Zabelin A., Medvedev A. et al. // 2013 IEEE Int. Ultrasonics Symp., Prague, Czech Republic, 2013. P. 1085. https://doi.org/10.1109/ULTSYM.2013.0278
  6. Рощупкин Д.В., Иржак Д.В., Емелин Е.В. и др. // Изв. вузов. Материалы электронной техники. 2015. № 3. С. 25.
  7. Fu X., Villora E.G., Matsuchita Y. et al. // J. Ceram. Soc. Jpn. 2016. V. 124. № 5. P. 523. https://doi.org/10.2109/jcersj2.15293
  8. Fritze H., Suhak Y., Johnson W.L., Tulleret H.L. // Electrochem. Soc. Meet. Abstracts. 2023. № 49. P. 2551. https://doi.org/10.1149/MA2023-01492551mtgabs
  9. Suzuki R., Suzuki M., Kakio S., Kimura N. // Jpn. J. Appl. Phys. 2023. V. 62. № SJ. P. SJ1022. https://doi.org/10.35848/1347-4065/acb4fd
  10. Wang G., Hou S., Xie L. et al. // Adv. Electron. Mater. 2024. P. 2300851. https://doi.org/10.1002/aelm.202300851
  11. Chen F., Yu F., Hou S. et al. // CrystEngComm. 2014. V. 16. № 44. P. 10286. https://doi.org/10.1039/C4CE01740D
  12. Kurosawa S., Kitahara M., Yokota Y. et al. // IEEE Trans. Nucl. Sci. 2014. V. 61. № 1. P. 339. https://doi.org/10.1109/TNS.2013.2287123
  13. Han B., Huang Y., Huang J. et al. // J. Lumin. 2023. V. 258. P. 119790. https://doi.org/10.1016/j.jlumin.2023.119790
  14. Han B., Xiao H., Chen Y. et al. // J. Lumin. 2022. V. 251. P. 119219. https://doi.org/10.1016/j.jlumin.2022.119219
  15. Yang S., Zhao C., Yu P., Wang Z. // IEEE Photon. J. 2024. V. 16. № 2. P. 1. https://doi.org/10.1109/JPHOT.2024.3371466
  16. Вайнштейн Б.К. Современная кристаллография. Т. 1. Симметрия кристаллов. Методы структурной кристаллографии. М.: Наука, 1979. 384 с.
  17. Шубников А.В. Основы оптической кристаллографии. М.: Изд-во Академии наук СССР, 1958. 205 с.
  18. Shi X., Yuan D., Wei A. et al. // Mater. Res. Bull. 2006. V. 41. № 6. P. 1052. https://doi.org/10.1016/j.materresbull.2005.11.019
  19. Wei A., Wang B., Qi H., Yuan D. // Cryst. Res. Technol. 2006. V. 41. № 4. P. 371. https://doi.org/10.1002/crat.200510589
  20. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
  21. Heimann R.B., Hengst M., Rossberg M., Bohm J. // Phys. Status Solidi. A. 2003. V. 195. № 2. P. 468. https://doi.org/10.1002/pssa.200305950
  22. Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
  23. Константинова А.Ф., Головина Т.Г., Дудка А.П. // Кристаллография. 2018. Т. 63. № 2. С. 218. https://doi.org/10.7868/S0023476118020091
  24. Шубников А.В., Флинт Е.Е., Бокий Г.Б. Основы кристаллографии. М.: Изд-во АН СССР, 1940. 488 с.
  25. Забелина Е.В., Козлова Н.С., Бузанов О.А. // Оптика и спектроскопия. 2023. Т. 131. Вып. 5. С. 634. https://doi.org/10.21883/OS.2023.05.55715.67-22
  26. Wang Z., Cheng X., Yuan D. et al. // J. Cryst. Growth. 2003. V. 249. № 1–2. P. 240. https://doi.org/10.1016/S0022-0248(02)02112-7
  27. Chen J., Shi E., Zheng Y. et al. // J. Cryst. Growth. 2006. V. 292. № 2. P. 404. https://doi.org/10.1016/j.jcrysgro.2006.04.044
  28. Wang Z., Yuan D., Shi X. et al. // J. Alloys Compd. 2004. V. 373. № 1–2. P. 287. https://doi.org/10.1016/j.jallcom.2003.11.008
  29. Забелина Е.В. Дис. “Неоднородности в кристаллах лантан-галлиевого танталата и их влияние на оптические свойства”… канд. физ.-мат. наук. М.: МИСИС, 2018. 150 с.
  30. Standard Operating Procedure Agilent Technologies – Cary 7000 Universal Measurement Spectrophotometer (UMS). University at Buffalo, 2024. P. 1. https://www.buffalo.edu/shared-facilities-equip/facilities-equipment/MaterialsCharacterizationLabs.host.html/content/shared/www/shared-facilities-equip/equipment-list/agilent-cary-7000.detail.html
  31. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences