Plasmon polaritons of the TE and TM types in a metal film bordering a superlattice I. Properties of impedances of half-infinite media and films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical investigation is conducted into the behaviour of TE and TM-polarised surface plasmon polaritons in a metal film situated between a periodic superlattice and a homogeneous dielectric, or alternatively, between two periodic superlattices. The dispersion equations are derived in the form of the determinant of a real symmetric matrix equalling zero. The matrix is constituted by the surface impedances of the media and the film. A number of general properties of the impedances and eigenvalues of the matrices entering the dispersion equations are established.

Full Text

Restricted Access

About the authors

A. N. Darinskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: Alexandre_Dar@mail.ru
Russian Federation, Moscow

References

  1. Raether H. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Heidelberg: Springer, 1988. 117 p.
  2. Майер С.А. Плазмоника. Теория и приложения. М.; Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2011. 226 с.
  3. Plasmonic Nanoguides and Circuits / Ed. Bozhevolnyi S.I. Singappore: Pan Stanford Publishing Pte. Ltd, 2009. 441 p.
  4. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications / Eds. Zouhdi S. et al. Springer Science + Business Media B.V., 2009. 305 p.
  5. Климов В.В. Наноплазмоника. М.: Наука, 2010. 480 с.
  6. Polo J., Mackay T., Lakhtakia A. Electromagnetic Surface Waves: A Modern Perspective. Amsterdam: Elsevier, 2013. 293 p.
  7. Quantum Plasmonics / Eds. Bozhevolnyi S.I. et al. Switzerland: Springer International Publishing, 2017. 327 p.
  8. Moradi A. Canonical Problems in the Theory of Plasmonics. Springer Nature Switzerland AG, 2020. 349 p.
  9. Gupta B.D., Shrivastav A.M., Usha S.P. Optical Sensors for Biomedical Diagnostics and Environmental Monitoring. London: CRC Press, 2018. 250 p.
  10. Oliveira L.C., Lima A.M.N., Thirstrup C. et al. Surface Plasmon Resonance Sensors, 2nd ed. Springer Series in Surface Sciences. New York: Springer, 2019. 326 p.
  11. Raghuwanshi S.K., Kumar S., Singh Y. 2D Materials for Surface Plasmon Resonance-based Sensors. CRC Press, 2022. 315 p.
  12. Geng J., Ren Ch., Wang R. et al. Spoof Surface Plasmon Polaritons Antenna. Springer Nature Singapore Pte Ltd, 2022. 172 p.
  13. Gupta B.D., Sharma A.K., Li J. Plasmonics-Based Optical Sensors and Detectors. Singapore: Jenny Stanford Publishing Pte Ltd, 2023. 509 p.
  14. Economou E.N. // Phys. Rev. 1969. V. 182. P. 539. https://doi.org/10.1103/PhysRev.182.539
  15. Burke J.J., Stegeman G.I., Tamir T. // Phys. Rev. B. 1986. V. 33. P. 5186. https://doi.org/10.1103/PhysRevB.33.5186
  16. Darinskii A.N. // Phys. Rev. A. 2021. V. 104. P. 023507. https://doi.org/10.1103/PhysRevA.104.023507
  17. Гончаренко А.М., Карпенко В.А., Гончаренко И.А. Основы теории оптических волноводов. Минск: Беларуская навука, 2009. 296 с.
  18. Darinskii A.N., Shuvalov A.L. // Phys. Rev. A. 2020. V. 102. P. 033515. https://doi.org/10.1103/PhysRevA.102.033515
  19. Darinskii A.N. // Phys. Rev. A. 2021. V. 103. P. 033501. https://doi.org/10.1103/PhysRevA.103.033501
  20. Konopsky V.N. // New J. Phys. 2010. V. 12. P. 093006. http://dx.doi.org/10.1088/1367-2630/12/9/093006
  21. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. 2-е изд. М.: Наука, 1982. 621 с.
  22. Shuvalov A.L. // Proc. R. Soc. A. 2020. V. 456. P. 2197. https://doi.org/10.1098/rspa.2000.0609
  23. Darinskii A.N. // Phys. Rev. A. 2022. V. 106. P. 033513. https://doi.org/10.1103/PhysRevA.102.033515
  24. Yariv А., Yeh P. Photonics: Optical Electronics in Modern Communications. 6th ed. Oxford University Press, 2007. 850 p.
  25. Shuvalov A.L., Poncelet O., Golkin S.V. // Proc. R. Soc. A. 2009. V. 465. P. 1489. http://dx.doi.org/ doi: 10.1098/rspa.2008.0457
  26. Kutsenko A.A., Shuvalov A.L., Poncelet O., Norris A.N. // Math. Mech. Solids. 2012. V. 18. P. 677. https://doi.org/10.1177/1081286512444750
  27. Shuvalov A.L., Kutsenko A.A., Korotyaeva M.E., Poncelet O. // Wave Motion. 2013. V. 50. P. 809. http://dx.doi.org/10.1016/j.wavemoti.2013.02.005
  28. https://refractiveindex.info
  29. Handbook of Optical Constants of Solids / Ed. Palik E. San Diego: Academic Press, 1998. 800 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Semi-infinite complementary SR-A (a) and SR-B (b). SRs with a period of two layers are shown. The layers are of the same color, made of the same material, and have the same thickness, except for the outer layers, the thickness of which is less than the thickness of the inner layers of the same material.

Download (53KB)
3. Fig. 2. Frequency dependence of impedances and in the lower forbidden zone: 1 – , 2 –

Download (46KB)
4. Fig. 3. Frequency dependences of impedances and in the upper forbidden zone: 1 – , 2

Download (150KB)
5. Fig. 4. Frequency dependence of impedance in the lower band gap (1) and upper band gap (1 and 2).

Download (51KB)

Copyright (c) 2024 Russian Academy of Sciences