Linear and nonlinear dielectric response of vdf60/tr40 copolymer in the vicinity of ferroelectric phase transition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of the bias electric field E= (0–10 kV/cm) on the dielectric properties of the VDF60/Tr40 copolymer was studied within the temperature range of 20–110°C. It was found that the dielectric nonlinearity De, is negative in the polar phase and becomes positive above the Curie temperature (TC). The increase in TC under the field E= is not uniform. At E= < Ec (Ec is the threshold field), the Curie temperature is practically independent of E=. At E= > Ec, the increase of TC is observed. The presence of the threshold field indicates the presence of sources of random electric fields in the material under study. It is assumed that they are responsible for the smearing of the ferroelectric phase transition.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Verkhovskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: l_korotkov@mail.ru
Ресей, Moscow

M. Pankova

Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation

Email: l_korotkov@mail.ru
Ресей, Voronezh

I. Popov

Voronezh State Technical University

Email: l_korotkov@mail.ru
Ресей, Voronezh

L. Korotkov

Voronezh State Technical University

Email: l_korotkov@mail.ru
Ресей, Voronezh

Әдебиет тізімі

  1. Forukawa T. // Phase Transitions. 1989. V. 18. P. 143. https://doi.org/10.1080/01411598908206863
  2. Koizumi N., Hagino J., Murata Y. // Ferroelectrics. 1981. V. 32. P. 141. https://doi.org/10.1080/00150198108238685
  3. Лущейкин Г.А. Полимерные пьезоэлектрики. М.: Химия, 1990. 176 с.
  4. Кочервинский В.В. // Успехи химии. 1999. Т. 68. № 10. С. 904. https://doi.org/10.1070/RC1999v068n10ABEH000446
  5. Кочервинский В.В. Применение сегнетоэлектрических полимеров в технике и медицине. Palmarium Academic Publishing, 2021. 194 с.
  6. Xu Q., Gao X., Zhao S. et al. // Adv. Mater. 2021. V. 33. P. 2008452. https://doi.org/10.1002/adma.202008452
  7. Zhu L., Qing Q. // Macromolecules. 2012. V. 45. P. 2937. https://doi.org/10.1021/ma2024057
  8. Budaev A.V., Belenkov R.N., Emelianov N.A. // Condens. Matter. 2019. V. 4. № 2. P. 56. https://doi.org/10.3390/CONDMAT4020056
  9. Koizumi N., Haikawa N., Habuca H. // Ferroelectrics. 1984. V. 57. P. 99. http://dx.doi.org/10.1080/00150198408012756
  10. Yagi T., Tatemoto M., Sako J. // Polymer J. 1980. V. 12. № 4. P. 209. https://doi.org/10.1295/polymj.12.209
  11. Верховская К.А., Коротков Л.Н., Караева О.А. // Кристаллография. 2019. Т. 64. № 4. С. 586. https://doi.org/10.1134/S0023476119040271
  12. Verkhovskaya K.A., Popov I.I., Korotkov L.N. // Ferroelectrics. 2020. V. 567. № 1. P. 223. https://doi.org/10.1080/00150193.2020.1791608
  13. Verkhovskaya K.A., Popov I.I., Tolstykh N.A., Korotkov L.N. // Ferroelectrics. 2022. V. 591. № 1. P. 211. https://doi.org/10.1080/00150193.2022.2041940
  14. Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений / Под ред. Смоленского Г.А. Л.: Наука, 1985. 396 с.
  15. Tashiro K., Takano K., Kobayashi M. et al. // Ferroelectrics. 1984. V. 57. P. 297. http://dx.doi.org/10.1080/00150198408012770
  16. Korotkov L.N. // Phys. Status Solidi. B. 2000. V. 222. № 2. P. R1. https://doi.org/10.1002/1521-3951(200011)222:23.0.CO;2-B
  17. Ламперт М., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. 416 с.
  18. Коротков Л.Н., Гриднев С.А., Климентова Т.И. // Изв. РАН. Сер. физ. 2004. Т. 68. С. 982.
  19. Дороговцев С.Н. // ФТТ. 1982. Т. 24. Вып. 6. C. 1661.
  20. Glinchuk M.D., Stephanovich V.A. // J. Phys. Condens. Matter. 1998. V. 10. Р. 11081. https://doi.org/10.1088/0953-8984/10/48/027
  21. Stephanovich V.A. // Ferroelectrics. 2000. V. 236. P. 209. https://doi.org/10.1080/00150190008016053

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Temperature dependences of e obtained during heating and cooling of the sample (1), and the dependence of e–1 on temperature (2). Straight lines are drawn in accordance with formulas (1a) and (1b). Insert – dependence of e–1 on (T – Tm)2.

Жүктеу (94KB)
3. Fig. 2. Temperature dependences of e obtained during heating (1a–3a) and cooling of the sample (1b–3b) at different values ​​of the electric bias field E= 0 (1a and 1b), 7.5 (2a and 2b) and 10 (3a and 3b) kV/cm.

Жүктеу (118KB)
4. Fig. 3. Dependence De(T) during heating and cooling of the sample.

Жүктеу (80KB)
5. Fig. 4. Dependences ТСh(E=) (curve 1) and ТСc(E=) (curve 2).

Жүктеу (63KB)

© Russian Academy of Sciences, 2024