STRUCTURAL FEATURES OF THE RAPIDLY QUENCHED Al–Cu–Fe ALLOY WITH DECAGONAL QUASICRYSTALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The multiphase alloys with a high Al content and the presence of quasicrystalline phases are promising for aviation and space industry due to their low specific weight, high specific strength, corrosion resistance, and high tribological properties. An Al82Cu7Fe11 alloy ribbon has been obtained by spinning. It is shown by X-ray diffraction analysis that the alloy contains Al (sp. gr. Fm m), Al13Fe4 (sp. gr. С2/m), Al2Cu (sp. gr. I4/mcm), Al23CuFe4 (sp. gr. Cmc21), and decagonal quasicrystals (sp. gr. P105mc). The inhomogeneity of the ribbon surface is revealed by scanning electron microscopy. The presence of Al, Al13Fe4, and decagonal quasicrystals in the ribbon is found by transmission electron microscopy.

About the authors

I. S. Pavlov

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: ispav88@gmail.com
Россия, Москва

N. D. Bakhteeva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334 Russia

Email: ispav88@gmail.com
Россия, Москва

A. L. Golovin

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: ispav88@gmail.com
Россия, Москва

E. V. Todorova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334 Russia

Email: ispav88@gmail.com
Россия, Москва

T. R. Chueva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334 Russia

Email: ispav88@gmail.com
Россия, Москва

A. L. Vasiliev

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; National Research Centre “Kurchatov Institute,” Moscow, 123098 Russia; Moscow Institute of Physics and Technology, Moscow oblast, Dolgoprudny, 141701 Russia

Author for correspondence.
Email: ispav88@gmail.com
Россия, Москва; Россия, Москва; Россия, Москва

References

  1. Shechtman D., Blech I., Gratias D. et al. // Phys. Rev. Lett. 1984. V. 53. P. 1951. https://doi.org/10.1103/PhysRevLett.53.1951
  2. Tsai A.P., Inoue A., Masumoto T. // Jpn. J. Appl. Phys. 1987. V. 26. P. L1505. https://doi.org/10.1143/JJAP.26.L1505
  3. Audier M., Bréchet Y., De Boissieu M. et al. // Philos. Mag. B. 1991 V. 63. P. 1375. https://doi.org/10.1080/13642819108205568
  4. Zhang Z., Li N.C., Urban K. // J. Mater. Res. 1991. V. 6. P. 366. https://doi.org/10.1557/JMR.1991.0366
  5. Ishimasa T., Fukano Y., Tsuchimori M. // Philos. Mag. Lett. 1988. V. 58. P. 157. https://doi.org/10.1080/09500838808214748
  6. Wang N., Chen H., Kuo K.H. // Phys. Rev. Lett. 1987. V. 59. P. 1010. https://doi.org/10.1103/PhysRevLett.59.1010
  7. Bendersky L. // Phys. Rev. Lett. 1985. V. 55. P. 1461. https://doi.org/10.1103/PhysRevLett.55.1461
  8. Ishimasa T., Nissen H.U., Fukano Y. // Phys. Rev. Lett. 1985. V. 55. P. 511. https://doi.org/10.1103/PhysRevLett.55.511
  9. Chattopadhyay K., Lele S., Ranganathan S. // Curr. Sci. 1985. V. 54. P. 895.
  10. Fung K.K., Yang C.Y., Zhou Y.Q. et al. // Phys. Rev. Lett. 1986. V. 56. P. 2060. https://doi.org/10.1103/PhysRevLett.56.2060
  11. Zou X.D., Fung K.K., Kuo K.H. // Phys. Rev. B. 1987. V. 35. P. 4526. https://doi.org/10.1103/PhysRevB.35.4526
  12. He L.X., Wu Y.K., Kuo K.H. // J. Mater. Sci. Lett. 1988. V. 7. P. 1284. https://doi.org/10.1007/BF00719959
  13. Singh A., Ranganathan S. // Acta Met. Mater. 1995. V. 43. P. 3553. https://doi.org/10.1016/0956-7151(95)00025-Q
  14. Cheng Y.F., Hui M.J., Li F.H. // Philos. Mag. Lett. 1991. V. 64. P. 129. https://doi.org/10.1080/09500839108214678
  15. Ebalard S., Spaepen F. // J. Mater. Res. 1990. V. 5. P. 62. https://doi.org/10.1557/JMR.1990.0062
  16. Menon J., Suryanarayana C. // Phys. Status Solidi. 1988. V. 107. P. 693. https://doi.org/10.1002/pssa.2211070224
  17. Шалаева В.В., Прекул Е.В., Назарова А.Ф. и др. // ФТТ. 2012. Т. 54. С. 657.
  18. Шалаева С.В., Чернышев Е.В., Смирнова Ю.В. и др. // ФТТ. 2013. Т. 55. С. 2095.
  19. Кузей А. Структурно-фазовые превращения в быстрозакаленных алюминиевых сплавах. М.: Беларуская навука, 2011. 399 с.
  20. Неумержицкая Е.Ю. Дис. “Структура и микротвердость сплавов алюминия с 3d-переходными металлами, полученных сверхбыстрой закалкой из расплава”… канд. физ.-мат. наук. М.: БГУ, 2006.
  21. Чугунов Л.Л., Осипов Д.Б., Калмыков А.К. и др. // Вестн. МГУ. Сер. 2. Химия. 2015. Т. 56. С. 98.
  22. Menguy N., Audier M., Guyot P. et al. // Philos. Mag. B. 1993. V. 68. P. 595. https://doi.org/10.1080/13642819308220145
  23. Векилов Ю.Х. // СОЖ. Сер. Физика. 1997. Т. 4. С. 87.
  24. Leonard H.R., Rommel S., Li M.X. et al. // Mater. Sci. Eng. A. 2020. V. 788. P. 139487. https://doi.org/10.1016/j.msea.2020.139487
  25. Watson T.J., Gordillo M.A., Cernatescu I. et al. // Scr. Mater. 2016. V. 123 P. 51. https://doi.org/10.1016/j.scriptamat.2016.05.037
  26. Watson T.J., Gordillo M.A., Ernst A.T. et al. // Corros. Sci. 2017. V. 121. P. 133. https://doi.org/10.1016/j.corsci.2017.03.010
  27. Watson T.J., Nardi A., Ernst A.T. et al. // Surf. Coatings Technol. 2017. V. 324. P. 57. https://doi.org/10.1016/j.surfcoat.2017.05.049
  28. Теплов А.А., Белоусов С.И., Головкова Е.А. и др. // Кристаллография. 2022. Т. 67. № 2. С. 170. https://doi.org/10.31857/S0023476122020254
  29. Клюева М.В. Дис. “Особенности синтеза и электронного транспорта монокристаллов квазикристаллических фаз и аппроксимант системы Al–Co–Cu–Fe”… канд. физ.-мат. наук. М.: МИСиС, 2016.
  30. Yamamoto A. // Acta Cryst. A. 1996. V. 52. P. 509. https://doi.org/10.1107/S0108767396000967
  31. Koopmans B., Schurer P.J., Van der Woude F. et al. // Phys. Rev. B. 1987. V. 35. P. 3005. https://doi.org/10.1103/PhysRevB.35.3005
  32. Fitz Gerald J.D., Withers R.L., Stewart A.M. et al. // Philos. Mag. B. 1988. V. 58. P. 15. https://doi.org/10.1080/13642818808211241
  33. Thangaraj N., Subbanna G.N., Ranganathan S. et al. // J. Microsc. 1987. V. 146. P. 287. https://doi.org/10.1111/j.1365-2818.1987.tb01351.x
  34. Singh A., Ranganathan S. // Philos. Mag. A. Phys. Condens. Matter, Struct. Defects Mech. Prop. 1996. V. 74. P. 821. https://doi.org/10.1080/01418619608242163
  35. de Wolff P.M. // Acta Cryst. A. 1974. V. 30. P. 777. https://doi.org/10.1107/S0567739474010710
  36. Janner A., Janssen T. // Phys. Rev. B. 1977. V. 15. P. 643. https://doi.org/10.1103/PhysRevB.15.643
  37. Janner A., Janssen T. // Physica. A. 1979. V. 99. P. 47. https://doi.org/10.1016/0378-4371(79)90124-9
  38. Yamamoto A., Ishihara K.N. // Acta Cryst. A. 1988. V. 44. P. 707. https://doi.org/10.1107/S010876738800296X
  39. Steurer W. // Z. Krist. 2004. B. 219. S. 391. https://doi.org/10.1524/zkri.219.7.391.35643
  40. Henley C.L. // J. Non. Cryst. Solids. 1985. V. 75. P. 91. https://doi.org/10.1016/0022-3093(85)90208-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (45KB)
3.

Download (1MB)
4.

Download (2MB)
5.

Download (412KB)
6.

Download (229KB)

Copyright (c) 2023 Russian Academy of Sciences