Influence of internal structures on the kinetics of magnetization reversary of ferrofluids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of computer modeling of structure formation in nanodispersed magnetic fluids and the influence of this process on the kinetics of their magnetization reversal. A system of identical spherical single-domain ferromagnetic particles suspended in a Newtonian fluid with magnetic moments “frozen” into their bodies is considered. The particles are involved in intense Brownian motion. The magnetic interaction of all particles with all, as well as with an external magnetic field, is considered.

The results show that the evolution of internal structures with a change in the external field can greatly, by several orders of magnitude, change the characteristic time of magnetization reversal of a ferrofluid. The results obtained can be useful for the development of both the general theory of these systems and many methods of their high-tech application.

Full Text

Restricted Access

About the authors

D. N. Chirikov

Уральский федеральный университет имени Первого Президента России Б. Н. Ельцина

Author for correspondence.
Email: d.n.chirikov@urfu.ru
Russian Federation, ул. Мира, 19, Екатеринбург, 620002

A. Yu. Zubarev

Уральский федеральный университет имени Первого Президента России Б. Н. Ельцина

Email: d.n.chirikov@urfu.ru
Russian Federation, ул. Мира, 19, Екатеринбург, 620002

References

  1. Kole M., Khandekar S. Engineering applications of ferrofluids: A review // J. Magn. Magn. Materials. 2021. V. 537. P. 168222. https://doi.org/10.1016/j.jmmm.2021.168222
  2. Oehlsen O., Cervantes-Ramirez S. I., Cervantes-Aviles P., Medina-Velo I. A. Approaches on ferrofluid synthesis and applications: Current status and future perspectives // ACS Omega. 2022. V. 7. № 4. P. 3134. https://doi.org/10.1021/acsomega.1c05631
  3. Шлиомис М. И. //Успехи физ. наук. 1974. Т. 112. С. 427.
  4. Блум Э. Я., Майоров М. М., Цеберс А. О. Магнитные жидкости, Рига: Зинатне, 1989. С. 386.
  5. Odenbach S. Colloidal magnetic fluids, basics, development and application of ferrofluids (Ed. Odenbach S.). Springer. 2009.
  6. Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions // Adv. Colloid Interface Sci. 2023. V. 311. P. 102810. https://doi.org/10.1016/j.cis.2022.102810
  7. Torres-Diaz I., C. Rinaldi C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids // Soft Matter. 2014. V. 10. P. 8584–8602. https://doi.org/10.1039/c4sm01308e
  8. Socoliuc V., Avdeev M.V., Kuncser V., Turcu R., Tombácz E., L. Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. P. 4786. https://doi.org/10.1039/D1NR05841J
  9. Mittal A., Roy I., Gandhi S. Magnetic nanoparticles: An overview for biomedical applications // Magnetochemistry. 2022. V. 8. P. 107. https://doi.org/10.3390/magnetochemistry8090107
  10. Roy K., Roy I. Therapeutic applications of magnetic nanoparticles: recent advances // Mater. Adv. 2022. V. 3. P. 7425–7444. https://doi.org/10.1039/d2ma00444e
  11. Włodarczyk A., Gorgon S., Radon A., Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives // Nanomaterials. 2022. V. 12. P. 1807.https://doi.org/10.3390/nano12111807
  12. Gontijo R.G., Guimarães A.B. Effect of interparticle correlation on magnetic hyperthermia in biological media: A numerical study // J. Mag. Magn. Materials. 2023. V. 580. P. 170931. https://doi.org/10.1016/j.jmmm.2023.170931
  13. Berkov D. V., Iskakova L. Yu., Zubarev A. Yu. Theoretical study of the magnetization dynamics of non-dilute ferrofluids // Phys. Rev. E. 2009. V. 79. P. 021407. https://doi.org/10.1103/PhysRevE.79.021407
  14. Sindt J. O., Camp P. J., Kantorovich S. S., Elfimova E.A., Ivanov A. O. Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids // Phys. Rev. E. 2016. V. 93. № 6. P. 063117. https://doi.org/10.1103/PhysRevE.93.063117
  15. Wang Z., Holm C., Müller H. W. Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids // Phys. Rev. E. 2002. V. 66. P. 021405. https://doi.org/10.1103/PhysRevE.66.021405
  16. Mendelev V. S., Ivanov A. O. Ferrofluid aggregation in chains under the influence of a magnetic field // Phys. Rev. E. 2004. V. 70. P. 051502. https://doi.org/10.1103/PhysRevE.70.051502
  17. http://espressomd.org
  18. Heyes D., Okumura H. Some physical properties of the Weeks-Chandler-Andersen fluid // Mol. Simul. 2006. V. 32. P. 45. https://doi.org/10.1080/08927020500529442
  19. Ewald P. Die Berechnung optischer und elektrostatischer Gitterpotentiale // Ann. Phys. 1921. V. 369. № 3. P. 253. https://doi.org/10.1002/andp.19213690304
  20. de Leeuw S., Perram J., Smith E. Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants // Proc. R. Soc. London. 1980. V. 373. P. 27. https://doi.org/10.1098/rspa.1980.0135
  21. Allen M., Tildesley D. Computer Simulation of Liquids (Oxford Science Publications, 1st ed. Clarendon Press, Oxford, 1987).
  22. https://www.open-mpi.org
  23. Wang Z., Holm C. Estimate of the cutoff errors in the Ewald summation for dipolar systems // J. Chem. Phys. 2001. V. 115. P. 6351. https://doi.org/10.1063/1.1398588
  24. Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules // Phys. Rev. 1967. V. 159. № 1. P. 98. https://doi.org/10.1103/PhysRev.159.98
  25. https://www.ks.uiuc.edu/research/vmd
  26. Klokkenburg M., Erne B. H., Meeldijk J. D., Wiedenmann A., Petukhov A. V., Dullens R. P. A., Philipse A.P. In situ imaging of field-induced hexagonal columns in magnetite ferrofluids // Phys. Rev. Lett. 2006. V. 97. P. 185702. https://doi.org/10.1103/PhysRevLett.97.185702
  27. Kantorovich S., Ivanov A. O., Rovigatti L., Tavares J.M., Sciortino F. Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density// Phys. Rev. Lett. 2013. V. 110, P. 148306. https://doi.org/10.1103/PhysRevLett.110.148306
  28. Rosensweig R. E. Heating magnetic fluid with alternating magnetic field // J. Magn. Magn. Materials. 2002. V. 252. P. 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0
  29. Покровский В. Н. Статистическая гидромеханика разбавленных суспензий. М.: Наука, 1978.
  30. Zubarev A. Yu., Iskakova L. Yu. Effect of chainlike aggregates on dynamical properties of magnetic liquids // Phys. Rev. E. 2000. V. 61. P. 5415. https://doi.org/10.1103/PhysRevE.61.5415
  31. Chirikov D. N., Fedotov S. P., Iskakova L. Yu., Zubarev A. Yu. Viscoelastic properties of ferrofluids // Phys. Rev. E. 2010. V. 82. P. 051405. https://doi.org/10.1103/PhysRevE.82.051405

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Screenshots of heterogeneous structures formed by particles in an external field. Characteristics of the system: dipole-dipole interaction parameter between magnetic particles λ = 7; their volume concentration φ = 0.5% (a, b), φ = 6% (c, d); particle magnetic moment m = 1.1∙10–18 A∙m2; temperature T = 298 K. (a, c) – magnetic field strength H = 0.1 kA/m (Langevin parameter κ = 0.0336); (b, d) – H = 1 kA/m (κ = 0.336).

Download (1MB)
3. Fig. 2. Dependences of the average magnetization of one particle (a) and the natural logarithm of the relative magnetization (b) of the particle system on time t. The vertical segments show the standard deviation from the mean. System characteristics: viscosity of the carrier medium η = 0.13 Pa sec; saturation magnetization of the particle material Ms = 5 105 A/m (magnetite); volume concentration of particles φ = 0.5%; temperature T = 298 K; particle diameter d = 16 nm; dipole-dipole interaction parameter λ = 7; the Langevin parameter κ increases from 0.0336 to 0.336. The solid line in Fig. (b) is the linear regression (16).

Download (127KB)
4. Fig. 3. The same as in Fig. 2 at λ = 5. The particle diameter d = 14.4 nm; the Langevin parameter κ increases from 0.024 to 0.24.

Download (123KB)
5. Fig. 4. The same as in Fig. 3 with a decrease in the dimensionless magnetic field κ from 0.24 to 0.024, which for the selected system parameters corresponds to a decrease in the magnetic field strength H from 1 kA/m to 0.1 kA/m.

Download (126KB)
6. Fig. 5. Magnetization of ferrofluid depending on time at λ = 0. The diameter of magnetite particles d = 16 nm. Other parameters are the same as in Fig. 2. Solid lines are theoretical results obtained using (14). (a) – Langevin parameter κ increases from 0.0336 to 0.336 (magnetic field H increases stepwise from 0.1 kA/m to 1 kA/m); (b) – κ decreases from 0.336 to 0.0336 (H decreases stepwise from 1 kA/m to 0.1 kA/m).

Download (122KB)
7. Fig. 6. Dependence of the relaxation time τR on the volume concentration of magnetite particles. The magnetic field H increases from 0.1 kA/m to 1 kA/m; temperature T = 298 K. (a) – dipole-dipole interaction parameter λ = 5; Langevin parameter κ increases from 0.024 to 0.24; particle diameter d = 14.4 nm; (b) – λ = 6; κ increases from 0.0288 to 0.288; d = 15.3 nm.

Download (135KB)
8. Appendix
Download (35KB)

Copyright (c) 2024 Russian Academy of Sciences