Dynamic susceptibility of ensembles of immobilized magnetic nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article deals with theoretical study of a dynamic response on the external field of ensembles of nano-sized ferromagnetic particles immobilized in a non -magnetic medium. Such systems can be magnetic gels and other magnetopolymer composites with a rigid enough matrix as well as many types of biologically tissues with embedded magnetic particles. The main attention of the work is focused on the analysis of the effect of magnetic interaction of particles on the complex magnetic susceptibility of the composite and the intensity of heat generation in it under the influence of an alternating magnetic field. The analysis shows that the value of the thermal effect non -monotonic, with the maximum, depends on the parameter of the magnetodipole interaction of the particles. We hope that this result helps to understand the physical cause of the qualitative contradictions between conclusions of various studies on the influence of the interpertpartical interactions on the components of the magnetic susceptibility of the magnetic composite and intensity of the heat generation under the alternating field.

Full Text

Restricted Access

About the authors

A. Yu. Zubarev

Уральский федеральный университет им. Б.Н. Ельцина

Email: Antoniusmagna@yandex.ru
Russian Federation, ул. Ленина, 51, Екатеринбург, 620002

L. Yu. Iskakova

Уральский федеральный университет им. Б.Н. Ельцина

Email: Antoniusmagna@yandex.ru
Russian Federation, ул. Ленина, 51, Екатеринбург, 620002

A. Yu. Musikhin

Уральский федеральный университет им. Б.Н. Ельцина

Author for correspondence.
Email: Antoniusmagna@yandex.ru
Russian Federation, ул. Ленина, 51, Екатеринбург, 620002

References

  1. Boczkowska A., Awietjan S.F. Tuning active magnetorheological elastomers for damping applications // Materials Science Forum. 2010. V. 766. P. 636–637. https://doi.org/10.4028/www.scientific.net/MSF.636-637.766
  2. Lopez-Lopez M. T., Scionti G., Oliveira A.C. et al. Generation and characterization of novel magnetic field-responsive biomaterials // PLOS ONE. 2015. https://doi.org/10.1371/journal.pone.0133878
  3. ira N., Dhagat P., Davidson J. R. A review of magnetic elastomers and their role in soft robotics // Front. Robot. AI. 2020. V. 7. P. 588391. https://doi.org/10.3389/frobt.2020.588391
  4. Kurlyandskaya G. V., Blyakhman F. A., Makarova E. B. et al. Functional magnetic ferrogels: From biosensors to regenerative medicine // AIP Advances. 2020. V. 10. P. 125128. https://doi.org/10.1063/9.0000021
  5. Rajan A., Sahu N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanopart. Res. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
  6. Vilas-Boas V et al. Magnetic hyperthermia for cancer treatment: main parameters affecting the outcome of in vitro and in vivo studies // Molecules. 2020. V. 25. № 12. P. 2874. https://doi.org/10.3390/molecules25122874
  7. Lingbing Li. Multifunctional hybrid nanogels for medicine. Handbook of materials for nanomedicine. 2020.
  8. Chung H-J., Parsons A., Zheng L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review // Adv. Intell. Syst. 2021. V. 3. P. 2000186. https://doi.org/10.1002/aisy.202000186
  9. Kaewruethai T., Laomeephol C., Pan Y., Luckanagul J. Multifunctional polymeric nanogels for biomedical applications // Gels. 2021. V. 7. P. 228. https://doi.org/10.3390/gels7040228
  10. Sung B., Kim M-H., Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications // Bioeng. Transl. Med. 2021. V. 6. P. e10190. https://doi.org/10.1002/btm2.10190
  11. M. Imran M, A. M. Affandi., M. M. Alam. et al. Advanced biomedical applications of iron oxide nanostructures based ferrofluids // Nanotechnology. 2021. V. 32. P. 422001. https://doi.org/10.1088/1361-6528/ac137a
  12. Naghdi M. et al. Magnetic nanocomposites for biomedical applications // Advances in Colloid and Interface Science. 2022. V. 308. P. 102771. https://doi.org/10.1016/j.cis.2022.102771
  13. Socoliuc V., Avdeev M. V., Kuncser V. et al. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. P. 4786–4886. https://doi.org/10.1039/D1NR05841J
  14. Montiel Schneider M. G., Martín M. J., Otarola J. et al. Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives // Pharmaceutics. 2022. V. 14. P. 204. https://doi.org/10.3390/pharmaceutics14010204
  15. X. Liu et.al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy // Theranostics. 2020. V. 10. № 8. P. 3793–3815. https://doi.org/10.7150/thno.40805
  16. Rajan A., Sahu N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanoparticle Research. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
  17. H.Rodriges et.al. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nanoheaters, noninvasive thermometry and computer simulations for treatment planning // Int. Journal of Hyperthermia. 2020. V. 37. P. 76. https://doi.org/10.1080/02656736.2020.1800831
  18. Ehsani A., Maha R. S., Shaygan S. et al. A review of the treatment of bone tumours by hyperthermia using magnetic nanoparticles // J. Nanoanalysis. 2022. V. 9. P. 206. https://doi.org/10.22034/jna.2022.1944876.1278
  19. Sedighi O., Alaghmandfard A., Montazerian M. et al. A critical review of bioceramics for magnetic hyperthermia // J. American Ceramic Society. 2022. V. 105. P. 1723. https://doi.org/10.1111/jace.17861
  20. Peiravi M., Eslami H., Ansari M. et al. Magnetic hyperthermia: potentials and limitations // J. Indian Chem. Society. 2022. V. 99. P. 100269. https://doi.org/10.1016/j.jics.2021.100269
  21. Farzanegan Z., Tahmasbi M. Pelvis received dose measurement for trauma patients in multi-field radiographic examinations: A TLD dosimetry study // Proceedings of the ISSSD. 2022. V. 1. P. 12.
  22. Włodarczyk A., Gorgon S., Radon A., Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and Perspectives // Nanomaterials. 2022. V. 12. P. 1807. https://doi.org/10.3390/nano12111807
  23. Peeters H., E. M. van Zwol, Brancato L. et al. Systematic review of the registered clinical trials for oncological hyperthermia treatment // Int. Journal of Hyperthermia. 2022. V. 39. № 1. P. 806–812. https://doi.org/10.1080/02656736.2022.2076292
  24. Rosensweig R.E. Heating magnetic fluid with alternating magnetic field // J. Magn. Magn. Materials. 2002. V. 252. P. 370–374. https://doi.org/10.1016/S0304-8853(02)00706-0
  25. Poperechny I. S., Raikher Yu. L., Stepanov V. I. Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy // Phys. Rev. B. 2010. V. 82. P. 174423. https://doi.org/10.1103/PhysRevB.82.174423
  26. Guibert C., Dupuis V., Peyre V. et al. Hyperthermia of magnetic nanoparticles: An experimental study of the role of aggregation // J. Phys. Chem. C. 2015. V. 119. P. 28148−28154. https://doi.org/10.1021/acs.jpcc.5b07796
  27. Beálle G., Corato R. Di, Kolosnjaj-Tabi J. et al. Ultra-magnetic liposomes for MR imaging, targeting, and hyperthermia // Langmuir. 2012. V. 28. P. 11834−11842. https://doi.org/10.1021/la3024716
  28. Dennis C. L., Jackson A. J., Borchers J. A. et al. The influence of collective behavior on the magnetic and heating properties of iron oxide nanoparticles // J. Appl. Phys. 2008. V. 103. P. 07A319. https://doi.org/10.1063/1.2837647
  29. Mehdaoui B., Tan R. P., Meffre A. et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results // Physical Review B. 2013. V. 87. P. 174419. https://doi.org/10.1103/PhysRevB.87.174419
  30. Valdés D. P., Lima E. Jr., Zysler R. D. et al. Modeling the magnetic-hyperthermia response of linear chains of nanoparticles with low anisotropy: A key to improving specific power absorption // Phys. Rev. Appl. 2020. V. 14. № 1. P. 014023. https://doi.org/10.1103/PhysRevApplied.14.014023
  31. Anand M. Hysteresis in a linear chain of magnetic nanoparticles // J. Appl. Phys. 2020. V. 128. № 2. P. 023903. https://doi.org/10.1063/5.0010217
  32. Gontijo R.G., Guimarães A.B. Langevin dynamic simulations of magnetic hyperthermia in rotating fields // J. Magn. and Magn. Materials. 2023. V. 565. P. 1701717. https://doi.org/10.1016/j.jmmm.2022.170171
  33. Zubarev A. Yu. Magnetic hyperthermia in a system of immobilized magnetically interacting particles // Phys. Rev. E. 2019. V. 99. P. 062609. https://doi.org/10.1103/PhysRevE.99.062609
  34. Zubarev A. Yu., Iskakova L. Yu. Dynamic susceptibility of ferrogels. Effect of interparticle interaction // J. Magn. Magn. Materials. 2023. V. 587. P. 171247. https://doi.org/10.1016/j.jmmm.2023.171247
  35. Ambarov A. V., Zverev Vl. S., Elfimova E. A. Numerical modeling of the magnetic response of interacting superparamagnetic particles to an ac field with arbitrary amplitude // J. Magn. and Magn. Materials. 2020. V. 497. P. 166010. https://doi.org/10.1088/1361-651X/abbfbb
  36. Urtizberea A., Natividad E., Arizaga A. et al. Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations // J. Phys. Chem C. 2010. V. 114. P. 4916. https://doi.org/10.1021/jp912076f
  37. Gudoshnikov S. A., Liubimov B. Ya., Usov N. A. Hysteresis losses in a dense superparamagnetic nanoparticle assembly // AIP Advances. 2012. V. 2. P. 012143. https://doi.org/10.1063/1.3688084
  38. Usov N., Serebryakova O., Tarasov V. Interaction effects in assembly of magnetic nanoparticles // Nanoscale Res. Lett. 2017. V. 12. P. 489. https://doi.org/10.1186/s11671-017-2263-x
  39. Martinez-Boubeta K. et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions // Adv. Func. Mater. 2012. V. 22. P. 3737. https://doi.org/10.1002/adfm.201200307
  40. Périgo E. A., Hemrey G., Sandre O. et al. Fundamentals and advances in magnetic hyperthermia // Appl. Phys. Rev. 2015. V. 2. P. 041302. https://doi.org/10.1063/1.4935688
  41. Dutz S., Kettering M., Hilger I. et al. Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties // Nanotechnology. 2011. V. 22. P. 265102. https://doi.org/10.1088/0957-4484/22/26/265102
  42. Odenbach S. Magnetoviscous effect in ferrofluids. berlin-heidelberg: Springer-verlag. 2002.
  43. Lartigue L. et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties // J. Am. Chem. Soc. 2011. V. 133. P. 10459–10472. https://doi.org/10.1021/ja111448t
  44. Tong S., Quinto C. A., Zhang L. et al. Size-dependent heating of magnetic. Iron oxide nanoparticles // ACS Nano. 2017. V. 11. P. 6808–6816. https://doi.org/10.1021/acsnano.7b01762
  45. de Gennes P. G., Pincus P. A. Pair correlations in a ferromagnetic colloid // Physics Kondens. Materials. 1970. V. 11. P. 189. https://doi.org/10.1007/BF02422637
  46. Buyevich Yu. A., Ivanov A.O. Equilibrium properties of ferrocolloids // Physica A. 1992. V. 190. P. 276. https://doi.org/10.1016/0378-4371(92)90037-Q
  47. Kalmykov Y. P., Titov S. V., Byrne D. J. et al. Dipole- dipole and exchange interaction effects on the magnetization relaxation of two macrospins: compared // J.Magn. Magn. Materials. 2020. V. 507. P. 166814. https://doi.org/10.1016/j.jmmm.2020.166814
  48. Brown W. F. Thermal fluctuations of a single-domain particle // J. Phys. Rev. 1963. V. 130. P. 1677. https://doi.org/10.1103/PhysRev.130.167

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of two interacting magnetic particles and the coordinate system used. Thick vertical lines are the easy magnetization axes of the particles; µ1,2 are unit vectors directed along the magnetic moments of the particles.

Download (38KB)
3. Fig. 2. Schematic map of states of a pair of particles in the plane (θ1,θ2). The inner dashed lines approximately illustrate the barriers between potential "valleys" with local minima (8). On the map, j1,2 are the flux densities of the probability of the system's transition through potential barriers between potential valleys. The arrows illustrate the directions of these flows.

Download (36KB)
4. Fig. 3. Real 〈χ′〉 and imaginary 〈χ′′〉 parts of the reduced complex susceptibility of the composite as a function of the field frequency ω. Volume concentration of particles Φ = 0.05; dimensionless parameter of magnetic anisotropy of the particle σ = 10. Numbers near the curves are the values ​​of the parameter l; the curve l = 0 corresponds to non-interacting particles.

Download (65KB)
5. Fig. 4. The same as in Fig. 3 for the dimensionless intensity p of heat release by a particle.

Download (47KB)
6. Fig. 5. Dimensionless intensity of energy dissipation p as a function of the parameter λ of the magnetic interaction of particles. The numbers at curves 1 and 2 correspond to ωτ0 = 0.5 and 0.75, respectively. Φ = 0.05; σ = 10.

Download (39KB)
7. Appendix A
Download (433KB)
8. Appendix B
Download (286KB)

Copyright (c) 2024 Russian Academy of Sciences