Stabilization of bulk nanobubbles with a hydrate layer
- Authors: Levin Y.K.1
-
Affiliations:
- Институт прикладной механики РАН
- Issue: Vol 87, No 1 (2025)
- Pages: 35-40
- Section: Articles
- Submitted: 28.05.2025
- Published: 24.01.2025
- URL: https://transsyst.ru/0023-2912/article/view/680862
- DOI: https://doi.org/10.31857/S0023291225010042
- EDN: https://elibrary.ru/USTTDY
- ID: 680862
Cite item
Abstract
The stabilization of nanobubbles is considered with the balance of the Laplace pressure at their boundary due to surface tension and electrostatic pressure due to Coulomb forces. The presence of a hydrate layer of thickness ~1 nm with a tangential orientation of water dipoles around it is taken into account, the low permittivity of which, approximately equal to 3, increases the pressure at the nanobubble boundary. The sizes and charge of a stable nanobubble are determined. It is shown that in salt water, the hydration layer, regardless of the charge of the nanobubble, increases the pressure at its boundary by almost 30 times, and in fresh water - several times less.
Full Text

About the authors
Yu. K. Levin
Институт прикладной механики РАН
Author for correspondence.
Email: iam-ras@mail.ru
Russian Federation, 125040, Москва, Ленинградский просп., д. 7, стр. 1
References
- Tan B.H., An H., Ohl C.-D. How bulk nanobubbles might survive // Physical Review Letters. 2020. V. 124. P. 134503. https://doi.org/10.1103/PhysRevLett.124.134503
- Бункин Н.Ф., Шкирин А.Ф. Исследование бабстонно-кластерной структуры воды и водных растворов электролитов методами лазерной диагностики // Труды ИОФАН им. А.М. Прохорова. 2013. Т. 69. С. 3–57.
- Favvas E.P., Kyzas G Z., Efthimiadou E.K., Mitropoulos A.Ch. Bulk nanobubbles, generation methods and potential applications// Current Opinion in Colloid & Interface Science. 2020. Vol. 54. P. 101455. https://doi.org/10.1016/j.cocis.2021.101455
- Nazary S., Hassanzadeh A., He Y., Khoshdast H., Kowalczuk P.B. Recent developments in generation, detection and application of nanobubbles in flotation // Minerals. 2022. V. 12. № 4. Р. 462. https://doi.org/10.3390/min12040462
- Wang H., Varghese J., Pilon L. Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity // Electrochim. Acta. 2011. V. 56. № 17. P. 6189–6197. https://doi.org/10.1016/j.electacta.2011.03.140
- Singh S. B., Shukla N., Cho C. H., Kim B.S., Park M.H., Kim K. Effect and application of micro- and nanobubbles in water purification // Toxicology and Environmental Health Sciences. 2021. V. 13. Р. 9–16. https://doi.org/10.1007/s13530-021-00081-x
- Meegoda J.N, Hewage S.A., and Batagoda J.H. Stability of nanobubbles // Environmental Engineering Science. 2018. V. 35. № 11. Р. 1216–1227. http://doi.org/10.1089/ees.2018.0203
- Meegoda J.N., Hewage S.A., and Batagoda J.H. Application of the diffused double layer theory to nanobubbles // Langmuir 2019. V. 35. № 37. Р. 12100−12112. https://doi.org/10.1021/acs.langmuir.9b01443
- Kelsall G.H., Tang S., Yurdakult S., Smith A.L. Electrophoretic behaviour of bubbles in aqueous electrolytes // J. Chem. SOC., Faraday Trans. 1996. V. 92. № 20. P. 3887–3893. https://doi.org/10.1039/FT9969203887
- Chan D.Y.C., Mitchell D.J. The free energy of an electrical double layer // Journal of Colloid and Interface Science. 1983. V. 95. № 1. P. 193–197.
- Бункин Н. Ф., Бункин Ф. В. Бабстонная структура воды и водных растворов электролитов // Успехи физических наук. 2016. Т. 186. № 9. С. 933–952. https://doi.org/10.3367/UFNr.2016.05.037796
- Hewage S.A., Kewalramani J. and Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
- Lopez-Garsia J.J., Moya A.A., Horno J., Delgado A., and Lez-Caballero F.G. A network model of the electrical double layer around a colloid particle // Journal of colloid and interface science. 1996. V. 183. № 1. P.124–130. https://doi.org/10.1006/jcis.1996.0525
- Jadhav A.J., Barigou M. On the clustering of bulk nanobubbles and their colloidal stability // Journal of Colloid and Interface Science. 2021. V. 601. P. 816–824. https://doi.org/10.1016/j.jcis.2021.05.154
- Ma X., Li M., Pfeiffer P. Ion adsorption stabilizes bulk nanobubbles // J. Colloid Interfac. Sci. 2022. V. 606. P. 1380–1394. https://doi.org/10.1016/j.jcis.2021.08.101
- Nirmalkar N., Pacek A.W., Barigou M. On the existence and stability of bulk nanobubbles // Langmuir. 2018. V. 34. № 37. Р. 10964–10973. https://doi.org/10.1021/acs.langmuir.8b01163
- Zhang H., Guo Z., Zhang X. Surface enrichment of ions leads to the stability of bulk nanobubbles // Soft Matter. 2020. V. 16. Р. 5470–5477. https://doi.org/10.1039/d0sm00116c
- Temesgen T., Bui T.T., Han M., Kim T., Park H. Micro and nanobubble technologies as a new horizon for watertreatment techniques: A review // Advances in Colloid and Interface Science. 2017. V. 246. P. 40–51. https://doi.org/10.1016/j.cis.2017.06.011
- Kyzas G.Z., Mitropoulos A.C. From bubbles to nanobubbles // Nanomaterials. 2021. V. 11. № 10. P. 2592. https://doi.org/10.3390/nano11102592
- Левин Ю.К. Механизм стабильности нанопузырей в воде // Изв. вузов. Физика. 2024. Т. 67. № 10. С. 58–61. https://doi.org/10.17223/00213411/67/10/7
- Weissenborn P.K., Pugh R.J. Surface tension of aqueous solutions of electrolytes: Relationship with ion hydration. Oxygen solubility, and bubble coalescence// J. Colloid Interface Science. 1996. V. 184. № 2. P. 550–563. https://doi.org/10.1006/jcis.1996.0651
- Craig V.S.J., Ninham B.W., and Pashley R.M. The effect of electrolytes on bubble coalescence in water // J. Phys. Chem. 1993. V. 97. №39. P. 10192–10197. https://doi.org/10.1021/j100141a047
- Tsao H.K., Koch D. L. Collisions of slightly deformable, high Reynolds number bubbles with shortrange repulsive forces // Physics of Fluids. 1994. V. 6. № 8. P. 2591–2605. https://doi.org/10.1063/1.868149
- Koshoridze S.I. and Levin Yu.K. Thermodynamic analysis of the stability of nanobubbles in water // Nanoscience and Technology: An International Journal. 2019. V. 10. № 1. P.21–27. https://doi.org/10.1615/NanoSciTechnolIntJ.2018028801
- Calgaroto S., Willberg K. Q. and Rubio J. On the nanobubbles interfacial properties and future applications in flotation // Minerals Engineering. 2014. V. 60. P. 33–40. https://doi.org/10.1016/j.mineng.2014.02.002
- Koshoridze S.I. and Levin Yu.K. Comment on “Can bulk nanobubbles be stabilized by electrostatic interaction?” by S. Wang, L. Zhou and Y. Gao, Phys. Chem. Chem. Phys. 2021. 23. 16501 // Phys. Chem. Chem. Phys. 2022. V. 24. P. 10622–10625. https://doi.org/10.1039/D1CP04406K
- Joly L., Ybert C., Trizac E., Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces // Phys. Rev. Lett. 2004. V. 93. P. 257805. https://doi.org/10.1103/PhysRevLett.93.257805
- Бошенятов Б.В., Кошоридзе C.И., Левин Ю.К. Об устойчивости нанопузырей в воде // Изв. вузов. Физика. 2018. Т. 61. № 10. С. 149−155.
- Кошоридзе С.И., Левин Ю.К. Условия зарождения и стабильности объемных нанопузырьков // Изв. вузов. Физика. 2022. № 1. С. 89–95. https://doi.org/10.17223/00213411/65/1/89c
- Кошоридзе C.И., Левин Ю.К. Стабильность заряженных нанопузырьков в воде. Письма в ЖТФ. 2019. Т. 45. С.61–62. https://doi.org/10.21883/PJTF.2019.01.47161.17521
- Левин Ю.К. Условия стабильности слоя Штерна объемных нанопузырей в воде // Изв. вузов. Физика 2022. T. 65. № 12. С. 55–59. https://doi.org/10.17223/00213411/65/12/55
- Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water // Science. 2018. V. 360. C. 1339–1342. https://doi.org/10.1126/science.aat4191
- Toney M.F., Howard J.N., Richer J., Gary L., Gordon J.G., Melroy O.R., Wiesler D.G.; Yee D., Sorensen L.B. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface // Nature. 1994. V. 368. P. 444–446. https://doi.org/10.1038/368444a0
- Lee C.Y., McCammon J.A., Rossky P.J. The structure of liquid water at an extended hydrophobic surface // J. Chem. Phys. 1984. V. 80. № 9. P. 4448–4455. https://doi.org/10.1063/1.447226
- Velasco-Velez J -J., Wu C.H., Pascal T.A., Wan L.F., Guo J.A., Prendergast D., Salmeron M. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy // Science. 2014. V. 346. P. 831–834. https://doi.org/10.1126/science.1259437
- Hewage S.A., Kewalramani J. and Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
- Левин Ю.К. Характеристики двойного электрического слоя объемных нанопузырей в воде // Коллоид. журн. 2023. Т. 85. № 3. С. 350–354. https://doi.org/10.31857/S0023291223600220
- Кошоридзе С.И. Влияние строения двойного электрического слоя на стабильность объемных нанопузырей // Инженерная физика. 2023. № 7. C. 22–25. https://doi.org/10.25791/infizik.7.2023.1342
- Меледин Г.В., Черкасский В.С. Электродинамика в задачах. Ч.1 // НГУ. 2009.
- Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Вып. 5. М.: Мир, 1966.
- Левин Ю.К. Новая концепция стабильности нанопузырей в воде. // Сб. трудов 13-й Всерос. конф. «Механика композиционных материалов и конструкций, сложных и гетерогенных сред». 2023. (С. 208, гл. 1). М.: ИПРИМ РАН. https://doi.org/10.33113/conf.mkmk.ras.2023.28
Supplementary files
