Spherical polymer gels containing sulfonate groups: synthesis and adsorption properties
- Authors: Laishevkina S.G.1, Druian L.M.1, Iakobson O.D.1, Ivankova Е.М.1, Shabsels B.М.1, Shevchenko N.N.1
-
Affiliations:
- Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
- Issue: Vol 87, No 1 (2025)
- Pages: 24-34
- Section: Articles
- Submitted: 28.05.2025
- Published: 24.01.2025
- URL: https://transsyst.ru/0023-2912/article/view/680861
- DOI: https://doi.org/10.31857/S0023291225010031
- EDN: https://elibrary.ru/UTAPVR
- ID: 680861
Cite item
Abstract
Porous cross-linked polyelectrolyte microspheres with diameter from 1 to 5 μm based on para-styrene sulfonate or copolymer of para-styrene sulfonate with vinyl acetate were synthesized. The content of sulfonate groups in the obtained polyelectrolyte microspheres is more than 2 mmol/g. It was shown that introduction of hydrophobic comonomer significantly increased the degree of swelling of polyelectrolyte microspheres. It was found that the value of adsorption of model compounds (fuchsin, methylene blue) significantly exceed the concentration of sulfonate groups. Morphology, structure of the surface layer of polyelectrolyte matrices were studied by optical and scanning electron microscopy, FTIR spectroscopy, specific surface by the BET method.
Full Text

About the authors
S. G. Laishevkina
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31L. M. Druian
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31O. D. Iakobson
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31Е. М. Ivankova
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31B. М. Shabsels
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31N. N. Shevchenko
Филиал федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт»
Author for correspondence.
Email: natali.shevchenko29@gmail.com
Институт высокомолекулярных соединений
Russian Federation, 199004, Санкт-Петербург, Большой пр. В.О., 31References
- Adepu S., Ramakrishna S. Controlled drug delivery systems: current status and future directions // Molecules. 2021. V. 26. № 19. P. 5905. https://doi.org/10.3390/molecules26195905
- Takenaga M., Serizawa Y., Azechi Y., Ochiai A., Kosaka Y., Igarashi R., Mizushima Y. Microparticle resins as a potential nasal drug delivery system for insulin // J. Control. Release. 1998. V. 52. № 1–2. P. 81–87. https://doi.org/10.1016/S0168-3659(97)00193-4
- Dong L., Zhang H., Zhang G., Li F., Li M., Wang H., Ye X., Ren X., Zhang J., Peng C., Liu H., Wu L. Polystyrene sulfonate resin as an ophthalmic carrier for enhanced bioavailability of ligustrazine phosphate controlled release system // J. Pharm Sci. 2024. V. 113. № 9. P. 2786–2794. https://doi.org/10.1016/j.xphs.2024.07.002
- Imazato S., Kitagawa H., Tsuboi R., Kitagawa R., Thongthai P., Sasaki J. Non-biodegradable polymer particles for drug delivery: A new technology for “bio-active” restorative materials // Dent. Mater. J. 2017. V. 36. № 5. P. 524–532. https://doi.org/10.4012/dmj.2017-156
- Kalenichenko D., Nifontova G., Karaulov A., Sukhanova A., Nabiev I. Designing functionalized polyelectrolyte microcapsules for cancer treatment // Nanomaterials. 2021. V. 11. № 11. P. 3055. https://doi.org/10.3390/nano11113055
- Кедик С.А., Суслов В.В., Шняк Е.А., Домнина Ю.М. Гелеобразующие полимеры для создания жидких эмболизатов // Разработка и регистрация лекарственных средств. 2017. V. 21. № 4. P. 56–63.
- Wang J., Li B., Qiu L., Qiao X., Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments // J. Biol. Eng. 2022. V. 16. № 18. P. 18. https://doi.org/10.1186/s13036-022-00298-5
- de Lima C.S.A., Balogh T.S., Varca J.P.R.O., Varca .H.C., Lugão A.B., Camacho-Cruz L.A., Bucio E., Kadlubowski S.S. An updated review of macro, micro, and nanostructured hydrogels for biomedical and pharmaceutical applications // Pharmaceutics. 2020. V. 12. № 10. P. 970. https://doi.org/10.3390/pharmaceutics12100970
- Wechsler M.E., Stephenson R.E., Murphy A.C., Oldenkamp H.F., Singh A., Peppas N.A. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing // Biomed. Microdevices. 2019. V. 21. P. 31. https://doi.org/10.1007/s10544-019-0358-0
- Oh J.K., Drumright R., Siegwart D.J., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications // Prog. Polym. Sci. 2008. V. 33. № 4. P. 448–477. https://doi.org/10.1016/j.progpolymsci.2008.01.002
- Stewart S.A., Domínguez-Robles J., Donnelly R.F., Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications // Polymers (Basel). 2018. V. 10. № 12. P. 1379. https://doi.org/10.3390/polym10121379
- Bettencourt A., Almeida A.J. Poly(methyl methacrylate) particulate carriers in drug delivery // J. Microencapsul. 2012. V. 29. № 4. P. 353–367. https://doi.org/10.3109/02652048.2011.651500
- Shaked E., Shani Y., Zilberman M., Scheinowitz M. Poly(methyl methacrylate) particles for local drug delivery using shock wave lithotripsy: In vitro proof of concept experiment // J. Biomed. Mater. Res. B Appl. Biomater. 2015. V. 103. № 6. P. 1228–1237. https://doi.org/10.1002/jbm.b.33301
- Schneider C., Langer R., Loveday D., Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems // J. Control. Release. 2017. V. 262. P. 284–295. https://doi.org/10.1016/j.jconrel.2017.08.004
- Rivera-Hernández G., Antunes-Ricardo M., Martínez-Morales P., Sánchez M. Polyvinyl alcohol based-drug delivery systems for cancer treatment // Int. J. Pharm. 2021. V. 600. P. 120478. https://doi.org/10.1016/j.ijpharm.2021.120478
- Lankalapalli S., Kolapalli V.R.M. Polyelectrolyte complexes: A review of their applicability in drug delivery technology // Indian J. Pharm. Sci. 2009. V. 71. № 5. P. 481–487. https://doi.org/10.4103/0250-474X.58165
- Лаишевкина C.Г., Якобсон О.Д., Иванькова Е.М., Шабсельс Б.М., Шевченко Н.Н. Влияние структуры сульфосодержащих полиэлектролитных матриц на адсорбцию ионов Cu2+ // Коллоидный журнал. 2024. Т. 86. № 1. С. 94–105. https://doi.org/10.31857/S0023291224010092
- Sudareva N., Suvorova O., Saprykina N., Vlasova H., Vilesov A. Doxorubicin delivery systems based on doped CaCO3 cores and polyanion drug conjugates // J. Microencapsul. 2021. V. 38. № 3. P. 164–176. https://doi.org/10.1080/02652048.2021.1872724
- Li F., Ye X., Li M., Nie Q., Wang H., Zhang G., Dong ., Wang C., Wu L., Liu H., Wang L., Peng C., Zhang J. Enhanced ophthalmic bioavailability and stability of atropine sulfate via sustained release particles using polystyrene sulfonate resin // Int. J. Pharm. 2024. V. 60. P. 124294. https://doi.org/10.1016/j.ijpharm.2024.124294
- Jahn P., Zelner M., Freger V., Ulbricht M. Polystyrene sulfonate particles as building blocks for nanofiltration membranes // Membranes (Basel). 2022. V. 12. № 11. P. 1138. https://doi.org/10.3390/membranes12111138
- Tiwari R., Walther A. Strong anionic polyelectrolyte microgels // Polym. Chem. 2015. V. 6. № 31. P. 5550–5554. https://doi.org/10.1039/c5py00426h
- Hofman A.H., Pedone M., Kamperman M. Protected poly(3-sulfopropyl methacrylate) copolymers: synthesis, stability, and orthogonal deprotection // ACS Polymers Au. 2022. V. 2. № 3. P. 169–180. https://doi.org/10.1021/acspolymersau.1c00044
- Fu Z., Liu M., Xu J., Wang Q., Fan Z. Stabilization of water-in-octane nano-emulsion. Part I: Stabilized by mixed surfactant systems // Fuel. 2010. V. 89. № 10. P. 2838–2843. https://doi.org/10.1016/j.fuel.2010.05.031
- Voronina N.S., Nechaev A.I., Strel’nikov V.N. Val’tsifer .A. Inverse Emulsion Copolymerization of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid sodium salt for preparing water-soluble drag reduction additives // Russ. J. Appl. Chem. 2021. V. 4. P. 748–757. https://doi.org/10.1134/S1070427221060082
- Reddy B.V., Rao G.R. Vibrational spectra and modified valence force field for N,N’-methylenebisa-crylamide // Indian J. Pure Appl. Phys. 2008. V. 46. № 9. P. 611–616.
- Li C., He Y., Zhou L., Xu T., Hu J., Peng C., Liu H. Fast adsorption of methylene blue, basic fuchsin, and malachite green by a novel sulfonic-grafted triptycene-based porous organic polymer // RSC Adv. 2018. V. 8. № 73. P. 41986–41993. https://doi.org/10.1039/C8RA09012B
- Florence Ng., Naorem H. Dimerization of methylene blue in aqueous and mixed aqueous organic solvent: a spectroscopic study // J. Mol. Liq. 2014. V. 198. P. 255–258. https://doi.org/10.1016/j.molliq.2014.06.030
Supplementary files
