Electroconvection near two-layer composite microparticles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents the results of a numerical simulation of an electrolyte solution behavior near a spherical dielectric microparticle covered with a homogeneous ion-selective shell under the influence of an external electric field. The particle is assumed to be stationary, and the electrolyte either stays still or is pumped externally with a constant velocity in absence of the electric field. The field, in turn, generates electroosmotic flow near the particle’s surface. It is shown that concentration polarization can occur near the particle, whereas electrokinetic instability only occurs near particles with a sufficiently thick shell. When the particle’s surface charge is opposite to the one of its shell, non-stationary regimes may be observed when the shell is thin enough.

全文:

受限制的访问

作者简介

G. Ganchenko

Финансовый университет при Правительстве Российской Федерации

Email: shelistov_v@mail.ru

Лаборатория электро- и гидродинамики микро- и наномасштабов

俄罗斯联邦, 125167, Москва, Ленинградский просп., 49/2

V. Shelistov

Финансовый университет при Правительстве Российской Федерации

编辑信件的主要联系方式.
Email: shelistov_v@mail.ru

Лаборатория электро- и гидродинамики микро- и наномасштабов

俄罗斯联邦, 125167, Москва, Ленинградский просп., 49/2

E. Demekhin

Финансовый университет при Правительстве Российской Федерации; НИИ механики МГУ им. М.В. Ломоносова

Email: shelistov_v@mail.ru

Лаборатория электро- и гидродинамики микро- и наномасштабов, Лаборатория общей аэродинамики

俄罗斯联邦, 125167, Москва, Ленинградский просп., 49/2; 119192, Москва, Мичуринский просп., 1

参考

  1. Paillot R. M. Smoluchowski – Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs (Bulletin de l’Académie des Sciences de Cracovie, mars 1903) // J. Phys.: Theor. Appl. 1904. V. 3. № 1. P. 912. https://doi.org/10.1051/jphystap:019040030091201
  2. Mohammadi R., Afsaneh H., Rezaei B., Zand M.M. On-chip dielectrophoretic device for cancer cell manipulation: A numerical and artificial neural network study // Biomicrofluidics. 2023. V. 17. P. 024102. https://doi.org/10.1063/5.0131806
  3. Духин С.С., Дерягин Б.В. Электрофорез. М.: Наука. 1976.
  4. Schnitzer O., Yariv E. Strong-field electrophoresis // J. Fluid Mech. 2012. V. 701. P. 333–351. https://doi.org/10.1017/jfm.2012.161
  5. Schnitzer O., Zeyde R., Yavneh I., Yariv E. Weakly nonlinear electrophoresis of a highly charged colloidal particle // Phys. Fluids. 2013. V. 25. № 5. P. 052004. https://doi.org/10.1063/1.4804672
  6. Schnitzer O., Yariv E. Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis // Phys. Fluids. 2014. V. 26. № 12. P. 122002. https://doi.org/10.1063/1.4902331
  7. Tottori S., Misiunas K., Keyser U.F., Bonthuis D.J. Nonlinear electrophoresis of highly charged nonpolarizable particles // Phys. Rev. Lett. 2019. V. 123. № 1. P. 014502. https://doi.org/10.1103/physrevlett.123.014502
  8. Khair A.S. Nonlinear electrophoresis of colloidal particles // Curr. Opin. Colloid Interface Sci. 2022. V. 59. P. 101587. https://doi.org/10.1016/j.cocis.2022.101587
  9. Dukhin S.S. Electrokinetic phenomena of the second kind and their applications // Adv. Colloid Interface Sci. 1991. V. 35. P. 173–196. https://doi.org/10.1016/0001-8686(91)80022-c
  10. Yariv E. Migration of ion-exchange particles driven by a uniform electric field // J. Fluid Mech. 2010. V. 655. P. 105–121. https://doi.org/10.1017/s0022112010000716
  11. Frants E.A., Ganchenko G.S., Shelistov V.S., Amiroudine S., Demekhin E.A. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields // Phys. Fluids. 2018. V. 30. № 2. P. 022001. https://doi.org/10.1063/1.5010084
  12. Mishchuk N.A., Takhistov P.V. Electroosmosis of the second kind // Colloids Surf. A Physicochem. Eng. Asp. 1995. V. 95. № 2–3. P. 119–131. https://doi.org/10.1016/0927-7757(94)02988-5
  13. Ganchenko G.S., Frants E.A., Shelistov V.S., Nikitin N.V., Amiroudine S., Demekhin E.A. Extreme nonequilibrium electrophoresis of an ion-selective microgranule // Phys. Rev. Fluid. 2019. V. 4. № 4. P. 043703. https://doi.org/10.1103/physrevfluids.4.043703
  14. Ganchenko G.S., Frants E.A., Amiroudine S., Demekhin E.A. Instabilities, bifurcations, and transition to chaos in electrophoresis of charge-selective microparticle // Phys. Fluids. 2020. V. 32. № 5. P. 054103. https://doi.org/10.1063/1.5143312
  15. Kłodzińska E., Szumski M., Dziubakiewicz E., Hrynkiewicz K., Skwarek E., Janusz W., Buszewski B. Effect of zeta potential value on bacterial behavior during electrophoretic separation // Electrophoresis. 2010. V. 31. № 9. P. 1590–1596. https://doi.org/10.1002/elps.200900559
  16. Polaczyk A.L., Amburgey J.E., Alansari A., Poler J.C., Propato M., Hill V.R. Calculation and uncertainty of zeta potentials of microorganisms in a 1:1 electrolyte with a conductivity similar to surface water // Colloids Surf. A Physicochem. Eng. Asp. 2020. V. 586. P. 124097. https://doi.org/10.1016/j.colsurfa.2019.124097
  17. Maurya S.K., Gopmandal P.P., Ohshima H., Duval J.F.L. Electrophoresis of composite soft particles with differentiated core and shell permeabilities to ions and fluid flow // J. Colloid Interface Sci. 2020. V. 558. P. 280–290. https://doi.org/10.1016/j.jcis.2019.09.118
  18. Ohshima H. Approximate analytic expressions for the electrophoretic mobility of spherical soft particles // Electrophoresis. 2021. V. 42. № 21–22. P. 2182–2188. https://doi.org/10.1002/elps.202000339
  19. Schnitzer O., Yariv E. Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion // J. Fluid Mech. 2016. V. 786. P. 84–109. https://doi.org/10.1017/jfm.2015.647
  20. Франц Е.А., Шелистов В.С., Ганченко Г.С., Горбачева Е.В., Алексеев М.С., Демехин Е.А. Электрофорез диэлектрической частицы в сильном электрическом поле // Экологический вестник научных центров Черноморского экономического сотрудничества. 2021. Т. 18. № 4. С. 33–40. https://doi.org/10.31429/vestnik-18-4-33-40
  21. Ганченко Г.С., Калайдин Е.Н., Чакраборти С., Демехин Е.А. Гидродинамическая неустойчивость при омических режимах в несовершенных электрических мембранах // Доклады Академии наук. 2017. Т. 474. № 3. С. 296–300. https://doi.org/10.7868/s0869565217150063
  22. Maduar S.R., Belyaev A. V., Lobaskin V., Vinogradova O.I. Electrohydrodynamics near hydrophobic surfaces // Phys. Rev. Lett. 2015. V. 114. № 11. P. 118301. https://doi.org/10.1103/PhysRevLett.114.118301
  23. Nikitin N.V. Third-order-accurate semi-implicit Runge-Kutta scheme for incompressible Navier-stokes equations // Int. J. Numer. Methods Fluids. 2006. V. 51. № 2. P. 221–233. https://doi.org/10.1002/fld.1122
  24. Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion // Phys. Fluids. 2013. V. 25. № 12. P. 122001. https://doi.org/10.1063/1.4843095
  25. Shelistov V.S., Demekhin E.A., Ganchenko G.S. Electrokinetic instability near charge-selective hydrophobic surfaces // Phys. Rev. E. 2014. V. 90. № 1. P. 013001. https://doi.org/10.1103/PhysRevE.90.013001
  26. Ганченко Г.С., Шелистов В.С., Демехин Е.А. Физика движения композитной микрочастицы с тонкой ионоселективной оболочкой во внешнем электрическом поле // Письма в ЖЭТФ (готовится к отправке).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the composite microparticle.

下载 (158KB)
3. Fig. 2. Distributions of charge density and salt concentration outside the particle at, and . (a), (b) , (c) . The distributions inside the shell are not shown.

下载 (293KB)
4. Fig. 3. Distributions of (a) current through the surface and (b) electric potential along the symmetry axis at , and . Curves 1 - , curves 2 - .

下载 (174KB)
5. Fig. 4. (a), (c) - dependence of voltage drop in the area of spatial charge on the external field strength ; (b), (d) - dependence of integral current on . Graphs (a) and (b) are plotted without advection, , graphs (c) and (d) - with advection, . Curves 1 - , curves 2 - , curves 3 - . In all cases . The dotted line corresponds to non-stationary modes (with electroconvection), for which the current values are averaged over time.

下载 (302KB)

版权所有 © Russian Academy of Sciences, 2025