A magnetic fluid stabilized by a double layer of surfactant in water rejects known models of rheology and dipole-dipole interaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three samples of magnetic fluid based on magnetite particles stabilized by a double layer of surfactant in water were synthesized. To stabilize the samples, lauric, oleic acids and their salts were used in three different combinations. The viscosity of the synthesized samples was measured as a function of concentration, temperature, and shear rate. With increasing temperature, the viscosity of a liquid sample stabilized by a double layer of lauric acid does not decrease relative to the viscosity of water, as was previously observed for classical magnetic fluids, but increases. For a sample stabilized by two layers of lauric and oleic acids, the temperature dependence of relative viscosity is non-monotonic. The relative viscosity of a sample stabilized with a double layer of oleic acid is practically independent of temperature.

To determine the concentration of the samples, measurements of magnetization curves were carried out, followed by their granulometric analysis. It has been established that the dispersed composition of the samples remains unchanged when diluted. The initial susceptibility of liquid samples was found to increase more slowly with increasing concentration than predicted by the modified effective field model. In contrast to the MEP model (and not only it), the coefficient of the quadratic term in the expansion of the initial susceptibility in the Langevin susceptibility series turned out to be significantly less than 1/3. Thus, to describe the properties of magnetic fluids stabilized with a double layer of surfactants, the construction of new theories of dipole-dipole interaction of particles is required.

Full Text

Restricted Access

About the authors

A. V. Lebedev

Институт механики сплошных сред УрО РАН

Author for correspondence.
Email: lav@icmm.ru
Russian Federation, ул. Академика Королева, 1, Пермь, 614018

References

  1. Шлиомис М.И. Магнитные жидкости // УФН. 1974. Т. 112. № 3. С. 435–458.
  2. Rosensweig R.E. Ferrohydrodynamics, Cambridge University press, Cambridge, 1985.
  3. Shimoiizaka J. Method of preparing a water-base magnetic fluid. Pat. 4094804, 1978.
  4. Лебедев А.В. Аномалии вязкости магнитной жидкости, стабилизированной двойным слоем ПАВ в воде // Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2023. Т. 13. № 4. С. 88–97. https://doi.org/10.21869/ 2223-1528-2023-13-3-88-97
  5. Khalafalla S.E., Reimers G.W., Rholl S.A. Dilution stable water based magnetic fluids. Pat. 4208294, 1979.
  6. Elmore W.C. On preparation of the magnetite high dispersed // Phys. Rev. 1938. V. 54. № 4. P. 309–310. https://doi.org/10.1103/PhysRev.54.309
  7. Chong J.S., Christiansen E.B., Baer A.D. Rheological properties of concentration suspensions // J. Appl. Polym. Sci. 1971. V. 15. № 8. P. 2007–2021. https://doi.org/10.1002/app.1971.070150818
  8. Vand V. Viscosity of solutions and suspensions. I. Theory // J. Phys. Colloid Chem. 1948. V. 52. № 2. P. 277–299. https://doi.org/10.1021/j150458a001
  9. Chow T.S. Viscoelasticity of concentrated dispersions // Phys. Rev. E. 1994. V. 50. № 2. P. 1274–1286. https://doi.org/10.1103/PhysRevE.50.1274
  10. Пшеничников А.Ф., Гилев В.Г. Реология и намагниченность концентрированных магнетитовых коллоидов // Коллоид. журн. 1997. Т. 59. № 3. С. 372–379.
  11. Лебедев А.В. Вязкость концентрированных коллоидных растворов магнетита // Коллоид. журн. 2009. Т. 71. № 1. С. 78–83.
  12. Pshenichnikov A.F., Mekhonoshin V.V., Lebedev A.V. Magneto-granulometric analizis of concentrated ferrocolloids // J. Magn. Magn. Mater. 1996. V. 161. P. 94–102. https://doi.org/10.1016/S0304-8853(96)00067-4
  13. Ivanov A.O., Kuznetsova O.B. Magnetic properties of dense ferrofluids: An influence of interparticle correlations // Phys. Rev. E. 2001. V. 64. P. 041405. https://doi.org/10.1103/PhysRevE.64.041405
  14. Bean C.P., Jacobs I.S. Magnetic granulometry and super‐paramagnetism // J. Appl. Phys. 1956. V. 27. № 12. P. 1448–1452. https://doi.org/10.1063/1.1722287
  15. Chantrell R.W., Popplewell J., Charles S.R. Measurements of particle size distribution parameters in ferrofluids // IEEE Transactions on Magnetics. 1978. V. 14. № 5. P. 975–977. https://doi.org/10.1109/TMAG.1978.1059918
  16. Kaiser R., Mishkolczy G. Magnetic properties of stable dispersions of subdomain magnetite particles // J. Appl. Phys. 1970. V. 41. № 3. P. 1064–1072. https://doi.org/10.1063/1.1658812
  17. Пшеничников А.Ф., Лебедев А.В., Радионов А.В., Ефремов Д.В. Магнитная жидкость для работы в сильных градиентных полях // Коллоид. журн. 2015. Т. 77. № 2. С. 207–212. https://doi.org/10.7868/S0023291215020159
  18. Лебедев А.В. Дипольное взаимодействие частиц в магнитных жидкостях // Коллоид. журн. 2014. Т. 76. № 3. С. 363–370. https://doi.org/10.7868/S0023291214030100

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamic viscosity of the initial sample of the first liquid as a function of the inverse shear rate. Solid line – parabola approximation.

Download (10KB)
3. Fig. 2. Dependence of the shear stress of the initial sample of the first liquid on the shear rate on a logarithmic scale.

Download (10KB)
4. Fig. 3. Temperature dependence of the relative viscosity of the first liquid at a volume fraction of particles of 0.274, 0.219, 0.151, 0.112 and 0.057. The concentration of the samples increases from bottom to top.

Download (14KB)
5. Fig. 4. Concentration dependence of the relative viscosity of the first liquid. The measurement temperature is 4, 23, 40.6, 60.3, 80.2°C and increases from bottom to top. The dotted line is the calculation using the modified Chong formula [10].

Download (17KB)
6. Fig. 5. Temperature dependence of the relative viscosity of the second liquid at a volume fraction of particles of 0.233, 0.179, 0.138, 0.093, 0.059. The concentration of samples increases from bottom to top.

Download (15KB)
7. Fig. 6. Concentration dependence of the relative viscosity of the second liquid. The curves correspond to temperatures (from bottom to top) of 80, 3, 22, 41 and 60°C. The dotted curve is the calculation using the modified Chong formula [10].

Download (14KB)
8. Fig. 7. Temperature dependence of the relative viscosity of the third liquid at a volume fraction of particles of 0.443, 0.324, 0.202, 0.149, 0.083. The concentration of samples increases from bottom to top.

Download (13KB)
9. Fig. 8. Concentration dependence of the relative viscosity of the third liquid. Measurement temperatures 3, 21, 41, 60, 80°C. The dotted line is the calculation using the modified Chong formula [10].

Download (12KB)
10. Fig. 9. Dependence of the initial susceptibility of the first liquid on its saturation magnetization. Dots are the measurement results, circles are the calculation of the Langevin susceptibility using the coefficient at the quadratic term of the series 0.1504, crosses are the calculation of the Langevin susceptibility according to the modified effective field theory.

Download (11KB)

Copyright (c) 2024 Russian Academy of Sciences