Photochemical oxidation of water catalyzed by a cobalt (II) tetra-nuclear complex with polyoxovolphramophosphate ligands and lithium antications in artificial photosynthesis
- 作者: Dzhabieva Z.M.1, Ilyaschenko V.Y.1, Savinykh T.A.1, Dmitriev A.I.1, Zhidkov M.V.1, Baskakova Y.M.1, Dzhabiev T.S.1
-
隶属关系:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
- 期: 卷 59, 编号 1 (2025)
- 页面: 46-52
- 栏目: ФОТОКАТАЛИЗ
- URL: https://transsyst.ru/0023-1193/article/view/684668
- DOI: https://doi.org/10.31857/S0023119325010064
- EDN: https://elibrary.ru/SPGMFR
- ID: 684668
如何引用文章
详细
Lithium salt of cobalt tetra-nuclear complex was synthesized and characterized by physicochemical methods Li10[Co4(H2O)2(α-PW9O34)2] 24H2O (1) – active homogeneous catalyst for the reaction of water oxidation with the formation of О2. ESI – mass spectrometric method shows the presence in the mass spectrum of the maximum peak with m/z = 1182.611 corresponding to the ion [Co4(PW9O34)2·HLi5]4– which forms a sandwich-type structure. Measurements of temperature-dependent magnetic susceptibility showed the predominance of antiferromagnetic interaction in the complex 1. The photochemical oxidation reaction of water under visible light irradiation in the presence of electron acceptor was studied Na2S2O8, photosensitizer bpy3RuCl2 and the catalyst. Efficiency of the catalytic system under optimal reaction conditions (рН 8, [1] = 5 μM), catalyst turnover number TON = 330, quantum yield of photogenerated oxygen (F = 0.46) is higher than that of the sodium salt of a similar catalyst (TON = 220, F = 0.27).
作者简介
Z. Dzhabieva
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
编辑信件的主要联系方式.
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
V. Ilyaschenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
T. Savinykh
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
A. Dmitriev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
M. Zhidkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
Yu. Baskakova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
T. Dzhabiev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka
参考
- Джабиев Т.С., Шилов А.Е. // Успехи химии. 2012. Т. 81. № 12. С. 1146.
- Kärkäs M.D., Verho O., Jonston E.V., Åkermark B. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572
- Hurst J.K. // Science. 2010. V. 328. P. 315. https://doi.org/10.1126/science.1187721
- Yagi M., Kaneko M. // Chem. Rev. 2001. V. 101. P. 21. https://doi.org/10.1021/cr9801081
- Sens C., Romero I., Rodriguez M. et al. // J. Am. Chem.Soc. 2004. V. 126. P. 7798. https://doi.org/10.1021/ja0486824
- Suess-Fink G. // Angew. Chem. Int. Ed. 2008. V. 47. P. 5888. https://doi.org/10.1002/anie.200801121
- Gersten S.W., Samuels G.J., Meyer T.J. // J. Am. Chem. Soc. 1982. V. 104. P. 4029. https://doi.org/10.1021/ja00378a053
- Geletii Y. V., Botar B., Kogerler P. et. al // Angew. Chem. Int. Ed. 2008. V. 47. № 21. P. 3847. https://doi.org/10.1002/anie.200705652
- Sartorel A.; Carraro M.; Scorrano G. et al // J. Am. Chem. Soc. 2008. V. 130. P. 5006. https://doi.org/10.1021/ja0778371
- Geletii Y.V., Huang Z., Hou Y. et al // J. Am. Chem. Soc. 2009. V. 131. P. 7522. https://doi.org/10.1021/ja901373m
- Toma F. M.; Sartorel A.; Iurlo M. et al. //. Nat. Chem. 2010. V. 2. P. 826.
- Besson C., Huang Z., Geletii Y.V. et al. // Chem. Commun. 2010. V. 46. P. 2784. https://doi.org/10.1039/B926064A
- Murakami M., Hong D., Suenobu T. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 11605.
- Zhu G., Geletii Y.V., Kogerler P. et al. // Dalton Trans. 2012. V. 41. P. 2084.
- Lv H., Geletii Y.V., Zhao C. et al. // Chem. Soc. Rev. 2012. V. 41. P. 7572.
- Sartorel A., Bonchio M., Campagna. S., Scandola, F. // Chem. Soc. Rev. 2014. V. 42. P. 2262. https://doi.org/10.1039/c2cs35287g
- Vickers J.W., Lv H., Sumliner J.M. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14110. https://doi.org/10.1021/ja4024868
- Sumliner J.M., Lv H., Fielden J. et al. // Eur. J. Inorg. Chem. 2014. V. 635.
- Vickers J.W., Sumliner J.M., Lv H. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 11942.
- Han X.-B., Zhang Z.-M., Zhang T. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 5359.
- Шматко Н.Ю., Джабиева З.М. Химическое моделирование фермента, окисляющего воду в фотосистеме II. Фотокаталитические преобразователи солнечной энергии в энергию химических топлив. LAP LAMBERT Academic Publishing. Saarbrucken, Deutschland, 2012. 76 с. ISBN: 978-3-659-29482-2.
- Джабиева З.М., Ткаченко В.Ю., Джабиев Т.С. // Химия высоких энергий. 2017. Т. 51. № 3. С. 230; https://doi.org/10.7868/S0023119317030056
- Dzhabieva Z.M., Shilov G.V., Avdeeva L.V. et al. // Russian Journal of Inorganic Chemystry. 2024. P. 1. https://doi.org/10.1134/S0036023624601004
- Bi L.H., Huang R.D., Peng J. et al. // J. Chem. Soc. Dalton Trans. 2011. V. 121.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир. 1966. 411 с.
- Hatchard C.G., Parker C.A. // Proc. Roy Soc. London. 1956. V. A235. № 1203. P. 518.
- Yin Q., Tan J.M., Besson C. et al // Science. 2010. V. 328. P. 342.
- Bao Li, Yi Yan, Fengyan Li et al. // Inorganica Chimica Acta. 2009. V. 362. P. 2796.
补充文件
