CO2-methane conversion

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this study, a plasma-chemical method of methane conversion with CO₂ was considered as a potential means of producing hydrogen while simultaneously reducing carbon dioxide emissions. In order to achieve this, a series of experiments were conducted in order to evaluate the composition of the resulting fusion gas and the arc parameters. During the course of this work, it was found that modifying the volume of hydrogen present during the reaction resulted in an increase in the average mass temperature, which in turn led to an increase in the electrical conductivity of the arc. This finding suggests that the electrical parameters of the arc can be employed to estimate the quantity of hydrogen present in the resulting fusion gas.

全文:

受限制的访问

作者简介

M. Obrivalin

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

编辑信件的主要联系方式.
Email: maxim.obryvalin2@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

D. Subbotin

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

Email: maxim.obryvalin2@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

S. Popov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences

Email: maxim.obryvalin2@gmail.com
俄罗斯联邦, St. Petersburg

Y. Denisov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

Email: maxim.obryvalin2@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg

V. Popov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences

Email: maxim.obryvalin2@gmail.com
俄罗斯联邦, St. Petersburg

参考

  1. IEA (2023), Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global-hydrogen-review-2023, Licence: CC BY 4.0
  2. Veras T.S., Mozer T.S., Santos D., Cesar A.S // International Journal of Hydrogen Energy. 2017. V. 42. №. 4 P. 2018–2033.
  3. Nikolaidis P., Poullikkas A. // Renewable and Sustainable Energy Reviews. 2017. V. 67. P. 597–611.
  4. MØller K.T., Jensen T.R., Akiba E., Li H-W. // Progress in Natural Science: Materials International. 2017. V. 27. № 1. P. 34–40
  5. Dincer I., Acar C. // International journal of hydrogen energy. 2015. V. 40. No. 34. P. 11094–11111.
  6. Rutberg P.G., Nakonechny G.V., Pavlov A.V., Popov S.D., Serba E.O., Surov A.V. // Journal of Physics D: Applied Physics. 2015. V. 48. I. 24. P. 245204
  7. Rutberg P.G., Kuznetsov V.A., Serba E.O, Popov S.D. // Applied Energy. 2013. V. 108. P. 505–514.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagram of the experimental setup. It should be noted that water vapor was not used in this experiment.

下载 (197KB)
3. Fig. 2. Diagram of the structure of an alternating current plasma torch. 1 – electrodes, 2 – channels for the arc, 3 – near–electrode space, 4 - gas source in the electrode region, 5 – gas source in the arc zone.

下载 (88KB)

版权所有 © Russian Academy of Sciences, 2024