Structural Features of Coals and Their Proneness to Spontaneous Combustion

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The paper presents the results of an assessment of the influence of coals’ structural features on their proneness to spontaneous combustion. 15 samples of hard coals and anthracite from different deposits of the Russian Federation were used as objects of of study. Based on the deconvolution of coal vitrinite raman spectra, a structural index characterizing the ratio between amorphous and crystallite forms of carbon compounds has been identified. It is noted that this index differs significantly for coals with a close stage of metamorphism. For the studied coals, the activity was determined for two types of cites that are differing in the rate of deactivation when interacting with ozone. The activity of cites of the first type (with a higher deactivation rate when interacting with ozone) grows with an increase in the proportion of crystalline carbon in the coals’ vitrinite, and the activity of cites of the second type (with a low rate of deactivation) generally decreases. The kinetic parameters of the combustion of coals (ignition temperature and activation energy) were estimated according to their thermogravimetric analysis in the air environment. It is shown that with an increase in the proportion of amorphous carbon compounds in vitrinite of coals, both the ignition temperature and the activation energy of coal combustion decrease, which altogether leads to an increase of a risk of spontaneous combustion.

作者简介

E. Kossovich

National University of Science and Technology “MISIS”

编辑信件的主要联系方式.
Email: e.kossovich@misis.ru
Moscow, 119049 Russia

S. Epstein

National University of Science and Technology “MISIS”

Email: apshtein@yandex.ru
Moscow, 119049 Russia

N. Kondratev

National University of Science and Technology “MISIS”

Email: kondratev.nurgun@gmail.com
Moscow, 119049 Russia

V. Nesterova

National University of Science and Technology “MISIS”

Email: malako3@mail.ru
Moscow, 119049 Russia

N. Dobryakova

National University of Science and Technology “MISIS”

Email: w.dobryakova@gmail.com
Moscow, 119049 Russia

参考

  1. Веселовский В.С., Алексеева Н.Д., Виноградова Л.П., Орлеанская Г.Л., Терпогосова Е.А. Самовозгорание промышленных материалов. М.: Наука, 1964. 246 с.
  2. Beamish B.B., Barakat M.A., George J.D.S. // Thermochimica Acta. 2000. V. 362. № 1–2. P. 79.
  3. https://doi.org/10.1016/S0040-6031(00)00588-8
  4. Qi X., Xin H., Wang D., Qi G. // Thermochimica Acta. 2013. V. 571. P. 21.
  5. https://doi.org/10.1016/j.tca.2013.08.008
  6. Beamish B.B., Barakat M.A., St. George J.D. // International Journal of Coal Geology. 2001. V. 45. № 2–3. P. 217.
  7. https://doi.org/10.1016/S0166-5162(00)00034-3
  8. Epshtein S.A., Gavrilova D.I., Kossovich E.L., Adamtsevich A.O. // Gornyi Zhurnal. 2016. № 7. P. 100.
  9. https://doi.org/10.17580/gzh.2016.07.22
  10. Smith M.A., Glasser D. // Fuel. 2005. V. 84. № 9. P. 1161.
  11. https://doi.org/10.1016/j.fuel.2004.12.005
  12. Takarada T., Tamai Y., Tomita A. // Fuel. 1985. V. 64. № 10. P. 1438.
  13. https://doi.org/10.1016/0016-2361(85)90347-3
  14. Zhang Y., Wu J., Chang L., Wang J., Li Z. // Journal of Loss Prevention in the Process Industries. 2013. V. 26. № 6. P. 1221.
  15. https://doi.org/10.1016/j.jlp.2013.05.008
  16. Phillips J., Xia B., Menéndez J.A. // Thermochimica Acta. 1998. V. 312. № 1–2. P. 87.
  17. https://doi.org/10.1016/S0040-6031(97)00442-5
  18. Методика оценки склонности шахтопластов угля к самовозгоранию (введена в действие Приказом Минтопэнерго России от 29.04.1998 № 151) // Госгортехнадзор России, 1997.
  19. Li B., Zhang H., Sheng C. // Clean Coal Technology and Sustainable Development – Proceedings of the 8th International Symposium on Coal Combustion, 2015. Singapore: Springer Singapore, 2016. № 212029. P. 553.
  20. https://doi.org/10.1007/978-981-10-2023-0_75
  21. Zhang Y., Wang J., Xue S., Wu Y., Li Z., Chang L. // Korean Journal of Chemical Engineering. 2016. V. 33. № 3. P. 862.
  22. https://doi.org/10.1007/s11814-015-0230-8
  23. Epshtein S.A., Kossovich E.L., Kaminskii V.A., Durov N.M., Dobryakova N.N. // Fuel. 2017. V. 199. P. 145.
  24. https://doi.org/10.1016/j.fuel.2017.02.084
  25. Avila C., Wu T., Lester E. // Energy & Fuels. 2014. V. 28. № 3. P. 1765.
  26. https://doi.org/10.1021/ef402119f
  27. Chen G., Ma X., Lin M., Lin Y., Yu Z. // Journal of the Energy Institute. 2015. V. 88. № 3. P. 221.
  28. https://doi.org/10.1016/j.joei.2014.09.007
  29. Zhan J., Wang H., Zhu F., Song S. // International Journal of Clean Coal and Energy. 2014. V. 3. № 2. P. 19.
  30. https://doi.org/10.4236/ijcce.2014.32003
  31. Yi B., Zhang L., Huang F., Xia Z., Mao Z., Ding J., Zheng C. // Energy Conversion and Management. 2015. V. 103. P. 439.
  32. https://doi.org/10.1016/j.enconman.2015.06.053
  33. Boron D.J., Taylor S.R. // Fuel. 1985. V. 64. № 2. P. 209.
  34. https://doi.org/10.1016/0016-2361(85)90218-2
  35. Sen R., Srivastava S.K., Singh M.M. // Indian Journal of Chemical Technology. 2009. V. 16. № 2. P. 103.
  36. Xuyao Q., Wang D., Milke J.A., Zhong X. // Mining Science and Technology (China). 2011. V. 21. № 2. P. 255.
  37. https://doi.org/10.1016/j.mstc.2011.02.024
  38. Zubíček V., Adamus A. // Fuel Processing Technology. 2013. V. 113. P. 63.
  39. https://doi.org/10.1016/j.fuproc.2013.03.031
  40. Humphreys D.R. A study of the propensity of Queensland coals to spontaneous combustion. 1979. 159 p.
  41. Arisoy A., Beamish B.B., Yoruk B. // Fuel. 2017. V. 210. P. 352.
  42. https://doi.org/10.1016/j.fuel.2017.08.075
  43. Beamish B.B., Hamilton G.R. // International Journal of Coal Geology. 2005. V. 64. № 1–2. P. 133.
  44. https://doi.org/10.1016/j.coal.2005.03.011
  45. Обвинцева Л.А., Сухарева И.П., Эпштейн С.А., Добрякова Н.Н., Аветисов А.К. // ХТТ. 2017. № 3. P. 25.
  46. https://doi.org/10.7868/S0023117717030045
  47. Epshtein S.A., Gavrilova D., Kossovich E., Nesterova V., Nikitina I., Fedorov S. // AIMS Energy. 2019. V. 7. № 1. P. 20.
  48. https://doi.org/10.3934/energy.2019.1.20
  49. Patrakov Y., Fedyaeva O., Semenova S., Fedorova N., Gorbunova L. // Fuel. 2006. V. 85. № 9. P. 1264.
  50. https://doi.org/10.1016/j.fuel.2005.11.005
  51. Kaminskii V., Kossovich E., Epshtein S.A., Obvintseva L., Nesterova V. // AIMS Energy. 2017. V. 5. № 6. P. 960.
  52. https://doi.org/10.3934/energy.2017.6.960.
  53. Epshtein S.A., Kossovich E.L., Dobryakova N.N., Obvintseva L.A. New approaches for coal oxidization propensity estimation // XVIII International Coal Preparation Congress. Springer, 2016. P. 483.
  54. https://doi.org/10.1007/978-3-319-40943-6_73
  55. Epshtein S.A., Shkuratnik V.L., Kossovich E.L., Agarkov K.V., Nesterova V.G., Gavrilova D.I. // Fuel. 2020. V. 267. P. 117191.
  56. https://doi.org/10.1016/j.fuel.2020.117191
  57. Epshtein S.A., Krasilova V. Al., Dobryakova N.N., Hao J., Kossovich E.L. // Chemical Industry Today. 2023. № 1. P. 45.
  58. https://doi.org/10.53884/27132854_2023_1_45
  59. Epshtein S.A., Kossovich E.L., Minin M.G., Dobryakova N.N., Gavrilova D.I. // Mining informational and analytical bulletin. 2023. № 4. P. 107.
  60. https://doi.org/10.25018/0236_1493_2023_4_0_107
  61. Kossovich E., Epshtein S.A., Krasilova V., Hao J., Minin M. // International Journal of Coal Science & Technology. 2023. V. 10. № 1. P. 20.
  62. https://doi.org/10.1007/s40789-023-00578-5
  63. Hirsch P.B. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1954. V. 226. № 1165. P. 143.
  64. https://doi.org/10.1098/rspa.1954.0245
  65. Bodzek D., Marzec A. // Fuel. 1981. V. 60. № 1. P. 47.
  66. https://doi.org/10.1016/0016-2361(81)90030-2
  67. Inchaurrondo N.S., Font J. // Molecules. 2022. V. 27. № 7. P. 2151.
  68. https://doi.org/10.3390/MOLECULES27072151
  69. Фиалков А.С. Углеграфитовые материалы. Москва.: Энергия, 1979. 320 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025