Trends of the Wave Activity Flux Vertical Component in the Northern Hemisphere
- 作者: Didenko K.А.1,2, Ermakova Т.S.2,3, Koval А.V.2, Savenkova Е.N.3
-
隶属关系:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Saint Petersburg State University
- Russian State Hydrometeorological University
- 期: 卷 64, 编号 6 (2024)
- 页面: 811-821
- 栏目: Articles
- URL: https://transsyst.ru/0016-7940/article/view/681553
- DOI: https://doi.org/10.31857/S0016794024060099
- EDN: https://elibrary.ru/QOGNOR
- ID: 681553
如何引用文章
详细
Long-term trends of three-dimensional wave activity Plumb’s fluxes are studied using the JRA-55 global reanalysis of the atmosphere. The vertical component of wave activity Plumb’s flux characterizes the propagation of atmospheric planetary waves generated in the troposphere into the upper atmosphere, and is used to analyze the stratosphere-troposphere dynamic interaction. The study of the wave activity flux was conducted for three latitudinal sectors of the Northern Hemisphere for months from December to March, over a 64-year period since 1958. It is shown that a statistically significant trend of wave activity flux from the troposphere to the stratosphere increase is observed over the Russian Far East in January and March. This can contribute to an increase in the frequency of cold waves formation in the middle latitudes troposphere. The study of stratosphere-troposphere dynamic interaction in general and wave activity fluxes in particular is necessary to task solution related to both global and regional climate changes and mixing of long-lived atmospheric components.
全文:

作者简介
K. Didenko
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences; Saint Petersburg State University
编辑信件的主要联系方式.
Email: didenko@izmiran.ru
俄罗斯联邦, Troitsk; Saint Petersburg
Т. Ermakova
Saint Petersburg State University; Russian State Hydrometeorological University
Email: taalika@mail.ru
俄罗斯联邦, Saint Petersburg; Saint Petersburg
А. Koval
Saint Petersburg State University
Email: a.v.koval@spbu.ru
俄罗斯联邦, Saint Petersburg
Е. Savenkova
Russian State Hydrometeorological University
Email: savenkova.en@mail.ru
俄罗斯联邦, Saint Petersburg
参考
- Варгин П.Н., Володин Е.М., Карпечко А.Ю., Погорельцев А.И. О стратосферно-тропосферных взаимодействиях // Вестник РАН. Т. 85. № 1. С. 39–46. 2015. https://doi.org/10.7868/S0869587315010181
- Гечайте И., Погорельцев А.И., Угрюмов А.И. Волновое взаимодействие стратосфера-тропосфера как предвестник аномальных похолоданий восточной части Балтийского региона // Ученые записки РГММУ. № 43. С. 129–139. 2016.
- Погорельцев А.И., Савенкова Е.Н., Перцев Н.Н. Внезапные стратосферные потепления: роль нормальных атмосферных мод // Геомагнетизм и аэрономия. Т. 54. № 3. С. 387–403. 2014. https://doi.org/10.7868/S0016794014020163
- Смышляев С.П., Погорельцев А.И., Галин В.Я., Дробашевская Е.А. Влияние волновой активности на газовый состав стратосферы полярных районов // Геомагнетизм и аэрономия. Т. 56. № 1. С. 102–116. 2016. https://doi.org/10.7868/S0016794015060152
- Andrews D.G., McIntyre M.E. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration // J. Atmos. Sci. V. 33. N 11. Р. 2031–2048. 1976. https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2
- Baldwin M., Birner T., Brasseur G., et al. 100 years of progress in understanding the stratosphere and mesosphere // Meteor. Mon. V. 59. N 27. P. 27.1–27.62. 2019. https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1
- Baldwin M., Dunkerton T. Stratospheric harbingers of anomalous weather regimes // Science. V. 294. N 5542. Р. 581–584. 2001. https://doi.org/10.1126/science.10633
- Chan C.J., Plumb R.A. The response to stratospheric forcing and its dependence on the state of the troposphere // J. Atmos. Sci. V. 66. N 7. Р. 2107–2115. 2009. https://doi.org/10.1175/2009JAS2937.1
- Charney J., Drazin P. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. V. 66. N 1. Р. 83–109. 1961. https://doi.org/10.1029/JZ066i001p00083
- Chen P., Robinson W. Propagation of planetary waves between the troposphere and stratosphere // J. Atmos. Sci. V. 49. N 24. Р. 2533–2545. 1992. https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2
- Cullens С.Y., Thurairajah B. Gravity wave variations and contributions to stratospheric sudden warming using long-term ERA5 model output // J. Atmos. Sol.-Terr. Phy. V. 219. ID 105632. 2021. https://doi.org/10.1016/j.jastp.2021.105632
- Gečaitė I. Climatology of three-dimensional Eliassen-Palm wave activity fluxes in the Northern Hemisphere stratosphere from 1981 to 2020 // Climate. V. 9. N 8. ID 124. 2021. https://doi.org/10.3390/cli9080124
- Gelaro R., McCarty W., Suarez M. J. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J. Climate. V. 30. N 14. Р. 5419–5454. 2017. https://doi.org/10.1175/JCLI-D-16-0758.1
- Haynes P.H., McIntyre M.E., Shepherd T.G., Marks C.J., Shine K.P. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces // J. Atmos. Sci. V. 48. N 4. P. 651–678. 1991. https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
- Haigh J.D., Blackburn M. Solar influences on dynamical coupling between the stratosphere and troposphere // Space Sci. Rev. V. 125. N 1–4. P. 331–344. 2006. https://doi.org/10.1007/978-0-387-48341-2_26
- Haigh J.D., Blackburn M., Day R. The response of tropospheric circulation to perturbations in lower stratospheric temperature // J. Climate. V. 18. N 17. P. 3672–3691. 2005. https://doi.org/10.1175/JCLI3472.1
- Huang J., Hitchcock P., Maycock A.C. et al. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions // Communications Earth & Environment. V. 2. ID 147. 2021. https://doi.org/10.1038/s43247-021-00215-6
- Jadin E.A., Wei K., Zyulyaeva Y.A., Chen W., Wang L. Stratospheric wave activity and the Pacific Decadal Oscillation // J. Atmos. Sol.-Terr. Phy. V. 72. N 16. P. 1163–1170. 2010. https://doi.org/10.1016/j.jastp.2010.07.009
- Karpechko A., Charlton-Perez A., Balmaseda M., Tyrrell N., Vitar F. Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble // Geophys. Res. Lett. V. 45. N 24. P. 13538–13546. 2018. https://doi.org/10.1029/2018GL081091
- Kobayashi Sh., Ota Y., Harada Y. et al. The JRA-55 reanalysis: general specifications and basic characteristics // J. Meteorol. Soc. Jpn. V. 93. N 1. P. 5–48. 2015. https://doi.org/10.2151/jmsj.2015-001
- Kolstad E., Breiteig T., Scaife A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere // Q. J. R. Meteor. Soc. V. 136. N 649. Р. 886–893. 2010. https://doi.org/10.1002/qj.620
- Koval A.V., Didenko K.A., Ermakova T.S., Gavrilov N.M., Kandieva K.K. Simulation of changes in the meridional circulation of the middle and upper atmosphere during transitional QBO phases / 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. Tomsk, July 4–8, 2022. Proc. SPIE. V. 12341. ID 1234170. 2022а. https://doi.org/10.1117/12.2643046
- Koval A.V., Gavrilov N.M., Kandieva K.K. Ermakova T.S., Didenko K.A. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Scientific Reports. V. 12. ID 21701. 2022b. https://doi.org/10.1038/s41598-022-26311-x
- Koval A.V., Toptunova O.N., Motsakov M.A., Didenko K.A., Ermakova T.S., Gavrilov N.M., Rozanov E.V. Numerical modeling of relative contribution of planetary waves to the atmospheric circulation // Atmos. Chem. Phys. V. 23. N 7. P. 4105–4114. 2023. https://doi.org/10.5194/acp-23-4105-2023
- Liu H.L., Talaat E.R., Roble R.G., Lieberman R.S., Riggin D.M., Yee J.H. The 6.5-day wave and its seasonal variability in the middle and upper atmosphere // J. Geophys. Res. – Atmos. V. 109. N 21. ID D21112. 2004. https://doi.org/10.1029/2004jd004795
- Plumb R.A. On the Three-Dimensional Propagation of stationary waves // J. Atmos. Sci. V. 42. N 3. P. 217–229. 1985. https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
- Pogoreltsev A.I., Kanukhina A.Yu., Suvorova E.V., Savenkova E.N. Variability of planetary waves as a signature of possible climatic changes // J. Atmos. Sol.-Terr. Phy. V. 71. N 14–15. P. 1529–1539. 2009. https://doi.org/10.1016/j.jastp.2009.05.011
- Polvani L.M., Waugh D.W. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes // J. Climate. V. 17. N 18. P. 3548–3554. 2004. https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2
- Rakushina E.V., Ermakova T.S., Pogoreltsev A.I. Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades // J. Atmos. Sol.-Terr. Phy. V. 171. P. 234–240. 2018. https://doi.org/10.1016/j.jastp.2017.08.005
- Reichler T., Kushner P.J., Polvani L.M. The coupled stratosphere–troposphere response to impulsive forcing from the troposphere // J. Atmos. Sci. V. 62. N 9. P. 3337–3352. 2005. https://doi.org/10.1175/JAS3527.1
- Robock A. Stratospheric forcing needed for dynamical seasonal prediction // B. Am. Meteorol. Soc. V. 82. N 10. P. 2189–2192. 2001. https://doi.org/10.1175/1520-0477(2001)082<2189:SFNFDS>2.3.CO;2
- Scott R., Polvani L. Internal variability of the winter stratosphere // J. Atmos. Sci. V. 63. N 11. P. 2758–2776. 2006. https://doi.org/10.1175/JAS3797.1
- Solomon S., Rosenlof K.H., Portmann R.W., Daniel J.S., Davis S.M., Sanford T.J., Plattner G.K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming // Science. V. 327. N 5970. P. 1219–1223. 2010. https://doi.org/10.1126/science.1182488
- Thompson D.W.J., Furtado J.C., Shepherd T.G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating // J. Atmos. Sci. V. 63. N 10. P. 2616–2629. 2006. https://doi.org/10.1175/JAS3771.1
- Tomassini L., Gerber E.P., Baldwin M.P., Bunzel F., Giorgetta M. The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe // J. Adv. Model. Earth Sy. V. 4. N 4. ID M00A03. 2012. https://doi.org/10.1029/2012MS000177
- Vargin P.N., Koval A.V., Guryanov V.V. Arctic stratosphere dynamical processes in the winter 2021–2022 // Atmosphere. V. 13. N 10. ID 1550. 2022. https://doi.org/10.3390/atmos13101550
- Wei K., Ma J., Chen W., Vargin P.N. Longitudinal peculiarities of planetary waves-zonal flow interactions and their role in stratosphere-troposphere dynamical coupling // Clim. Dynam. V. 57. N 9–10. P. 2843–2862. 2021. https://doi.org/10.1007/s00382-021-05842-5
- Zyulyaeva Yu.A., Zhadin E.A. Analysis of three-dimensional Eliassen-Palm fluxes in the lower stratosphere // Russ. Meteorol. Hydrol. V. 34. N 8. P. 483–490. 2009. https://doi.org/10.3103/S1068373909080019
补充文件
