Origin, genetic diversity and migration routes of cultivated emmer Triticum dicoccum
- Autores: Fisenko А.V.1, Dragovich А.Y.1
-
Afiliações:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Edição: Volume 60, Nº 4 (2024)
- Páginas: 20-33
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://transsyst.ru/0016-6758/article/view/666940
- DOI: https://doi.org/10.31857/S0016675824040022
- EDN: https://elibrary.ru/croymr
- ID: 666940
Citar
Resumo
During the period of significant climatic and environmental changes and the constant growth of the human population, new effective approaches in wheat breeding are required, in particular, the study of genetic and genomic diversity, origin and migration routes of species genetically related to common wheat, which could be donors of genes controlling economically valuable characteristics. Such species include the cultivated emmer Triticum dicoccum (Schrank) Schuebl. With subgenomes A and B (2n = 28), similar to the corresponding subgenomes of hexaploidcommon wheat. The review examines the issues of genetic and genomic diversity of cultivated emmer, its domestication and routes of distribution. The characteristics of some T. dicoccum genes introduced into common and durum wheat, or promising for further use in breeding, are given.
Palavras-chave
Texto integral

Sobre autores
А. Fisenko
Vavilov Institute of General Genetics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: fisenko800@mail.ru
Rússia, Moscow, 119991
А. Dragovich
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: dragova@mail.ru
Rússia, Moscow, 119991
Bibliografia
- Zohary D., Hopf M., Weiss E. Domestication of plants in the Old World, 4th ed. Oxford: Oxford Univ. Press, 2012. 316 p.
- Feldman M. The world wheat book. A history of wheat breeding. Paris: Lavoiser Publ. 2001. P. 3–56.
- Ozkan H., Brandolini A., Pozzi C. et al. A reconsideration of the domestication geography of tetraploid wheats //Theor. Appl. Genet. 2005. V. 110. № 6. P. 1052–1060. https://doi.org/10.1007/s00122-005-1925-8
- Luo M.-C., Yang Z.-L., You F.M. et al. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication // Theor. Appl. Genet. 2007. V. 114. № 6. P. 947–959. https://doi.org/10.1007/s00122-006-0474-0
- Avni R. Nave M., Barad O. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication // Science. 2017. V. 357. P. 93–97. https://doi.org/10.1126/science.aan0032
- Salamini F., Ozkan H., Brandolini A. et al. Genetics and geography of wild cereal domestication in the Near East // Nat. Rev. Genet. 2002.V. 3. P. 429–441. https://doi.org/10.1038/nrg817
- Nesbitt M. When and where did domesticated cereals first occur in southwest Asia? // The Down of Farming in the Near East. Berlin: Ex oriente, 2002. P. 113–132.
- Гончаров Н.П., Кондратенко Е.Я. Происхождение, доместикация и эволюция пшениц // Вестник ВОГиС. 2008. Т. 12. № 1/2. С.159–179.
- Zohary D. Unconscious selection and the evolution of domesticated plants // Econ. Bot. 2004. V. 58(1). P. 5–10. https://doi.org/10.1663/0013-0001(2004)058[0005:usateo]2.0.co;2
- Дорофеев В.Ф., Якубцинер М.М., Руденко М.И. и др. Пшеницы мира. Л.: Колос, 1976. 486 с.
- Lev-Yadun S., Gopher A., Abbo S. The cradle of agriculture // Science. 2000. V. 288. № 5471. P. 1602–1603. https://doi.org/10.1126/science.288.5471.1602
- Dubcovsky J., Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication // Science. 2007. V. 316. № 5833. P. 1862–1866. https://doi.org/10.1126/science.1143986
- Levy A. A., Feldman M. Evolution and origin of bread wheat // Plant Cell. 2022. V. 34. P. 2549–2567. https://doi.org/10.1093/plcell/koac130
- Arzani A., Ashraf M. Cultivated ancient wheats (Triticum spp.): A potential source of health‐beneficial food products // Comprehensive Rev. in Food Sci. and Food Safety. 2017.V. 16. № 3. P. 477–488. https://doi.org/10.1111/1541-4337.12262
- Zhao X., Guo Y., Kang L. et al. Population genomics unravels the Holocene history of bread wheat and its relatives // Nat. Plants. 2023.V. 9.P.403–419. https://doi.org/10.1038/s41477-023-01367-3
- Weiss H., Wetterstrom W., Nadel D., Bar-Yosef O. The board spectrum revisited: Evidence from plant remains // Proc. Natl Acad. Sci. U S A. 2004. V. 101. P. 9551–9555. https://doi.org/10.1073/pnas.0402362101
- Snir A., Nadel D., Groman-Yaroslavski I. et al. The origin of cultivation and protoweeds, long before Neolithic farming //PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0131422
- Гончаров Н.П. Сравнительная генетика пшениц и их сородичей. Новосибирск: Гео, 2012. 523 с.
- Arranz-Otaegui A., Colledge S., Ibanez J.J., Zapata L. Crop husbandry activities and wild plant gathering, use and consumption at the EPPNB Tell Qarassa North (south Syria) // Veget. Hist. Archaeobot. 2016. V. 25. P. 629–645. https://doi.org/10.1007/s00334-016-0564-0
- Harlan J.R., Zohary D. Distribution of wild wheats and barley // Science. 1966. V. 153. P. 1074–1080.
- Bar-Yosef O. The Natufian culture in the Levant, threshold to the origins of agriculture // Evolut. Anthropol. 1998. V. 6. P. 159–177. https://doi.org/10.1002/(sici)1520-6505(1998)6:5<159::aid-evan4>3.0.co;2-7
- Riehl S., Zeidi M., Conard N.J. Emergence of agriculture in the foothills of the Zagros Mountains of Iran // Science. 2013. V. 341. P. 65–67. https://doi.org/10.1126/science.1236743
- Jones M.K., Allaby R.G., Brown T.A. Wheat domestication // Science. 1998. V. 279. № 5349. P. 302–303.
- Oliveira H.R., Jacocks L., Czajkowska B.I. et al. Multiregional origins of the domesticated tetraploid wheats //PLoS One. 2020. V. 15. https://doi.org/10.1371/journal.pone.0227148
- Ozkan H., Brandolini A., Schafer-Pregl R., Salamini F. AFLP analysis of a collection of tetraploid wheat indicated the origin of emmer and hard wheat domestication in southeastern Turkey // Mol. Biol. Evol. 2002. V. 19. P. 1797–1801. https://doi.org/10.1093/oxfordjournals.molbev.a004002
- Mori N., Ishii T., Ishido T. et al. Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting // Proc. 10th Intern. Wheat Genet. Symp. (1–6 September 2003, Paestum, Italy). Rome: Instituto Sperimentale per la Cereali coltura, 2003. P. 25–28.
- Heun M., Schaefer-Pregl R., Klawan D. et al. Site of einkorn wheat domestication identified by DNA fingerprinting // Science. 1997.V. 278. № 5341. P. 1312–1314. https://doi.org/10.1126/science.278.5341.1312
- Civáň P., Ivaničová Z., Brown T.A. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent // PLoS One. 2013.V. 8. https://doi.org/10.1371/journal.pone.0081955
- Badaeva E.D., Keilwagen J., Knüpffer H. et al. Chromosomal passports provide new insights into diffusion of emmer wheat //PLoS One. 2015.V. 10. https://doi.org/10.1371/journal.pone.0128556
- Iob A., Botiguе L. Genomic analysis of emmer wheat shows a complex history with two distinct domestic groups and evidence of differential hybridization with wild emmer from the western Fertile Crescent // Veget. History and Archaeobotany. 2023. V. 32. P. 545–558. https://doi.org/10.1007/s00334-022-00898-7
- Zhou Y., Zhao X., Li Y. et al. Triticum population sequencing provides insights into wheat adaptation // Nat. Genetics. 2020. V. 52. P. 1412–1422. https://doi.org/10.1038/s41588-020-00722-w
- Cheng H., Liu J., Wen J. et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat // Genome Biol. 2019. V. 20. P. 1–16. https://doi.org/10.1186/s13059-019-1744-x
- Мак Кей Дж. Генетические основы систематики пшениц // С.-х. биология. 1968. Т. 3. № 1. С. 12–25.
- Watanabe N., Ikebata N. The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat // Euphytica. 2000. V. 115. P. 215–220. https://doi.org/10.1023/A:1004066416900
- Watanabe N., Sugiyama K., Yamagishi Y., Sakata Y. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats // Hereditas. 2002. V. 137. P. 180–185. https://doi.org/10.1034/j.1601-5223.2002.01609.x
- Li W., Gill B.S. Multiple genetic pathways for seed shattering in the grasses // Funct. Integr. Genomics. 2006. V. 6. P. 300–309. https://doi.org/10.1007/s10142-005-0015-y
- Tsujimoto H. Production of near-isogenic lines and marked monosomic lines in common wheat (Triticum aestivum) cv. Chinese spring // J. Heredity. 2001. V. 92. P. 254–259. https://doi.org/10.1093/jhered/92.3.254
- Kosuge K., Watanabe N., Melnik V.M. et al. New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat // Genet. Resour. Crop Evol. 2012. V. 59. P. 1115–1124. https://doi.org/10.1007/s10722-011-9747-9
- Simonetti M.C., Bellomo M.P., Laghetti G. et al. Quantitative trait loci influencing free-threshing habit in tetraploid wheats // Genet. Resour. Crop Evol. 1999. V. 46. P. 267–271. https://doi.org/10.1023/A:1008602009133
- Matsuoka Y. Evolution of polyploid Triticum wheats under cultivation: The role of domestication, natural hybridization and allopolyploid speciation in their diversification // Plant Cell Physiol. 2011. V. 52. P. 750–764. https://doi.org/10.1093/pcp/pcr018
- Nevo E. Evolution of wild emmer wheat and crop improvement // J. Systematics and Evolution. 2014.V. 52 № 6. P. 673–696. https://doi.org./10.1111/jse.12124
- Peng J., Ronin Y., Fahima T. et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat // Proc. Nat. Acad. Sci. USA. 2003.V. 100. P. 2489–2494. https:doi.org.10.1073/pnas.252763199
- Ling H.-Q., Zhao S., Liu D. et al. Draft genome of the wheat A‐genome progenitor Triticum urartu // Nature. 2013. V. 496. P. 87–90. https://doi.org/10.1038/nature11997
- He F., Pasam R., Shi F. et al. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome // Nat. Genetics. 2019. V. 51. P. 896–904. https://doi.org/10.1038/s41588-019-0382-2
- Nyine M., Adhikari E., Clinesmith M. et al. Genomic patterns of introgression in interspecific populations created by crossing wheat with its wild relative // Genes Genomes Genetics Early Online. 2020. g3.401479.2020. https://doi.org/10.1534/g3.120.401479
- Tanno K., Willcox G. How fast was wild wheat domesticated? // Science. 2006.V. 311. № 5769. P. 1886. https://doi.org/10.1126/science.1124635
- van Zeist W., Bakker-Heeres J.A.H. Archaeobotanical studies in the Levant. 1. Neolithic sites in the Damascus basin: Aswad, Ghoraife, Ramad // Palaeohistoria. 1975. V. 24. P. 165–256.
- Feldman M., Kislev M.E. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat // Israel J. Plant Sci. 2007. V. 55. P. 207–221. https://doi.org/10.1560/IJPS.55.3-4.207
- Lev-Yadun S., Gopher A., Abbo S. How and when was wild wheat domesticated? // Science. 2006. V. 313. № 5785. P. 296–297. https://doi.org/10.1126/science.313.5785.296b
- Flavell R., Oʹdell M., Sharp P. et al. Variation in the intergenic spacer of ribosomal DNA of wild wheat, Triticum dicoccoides, in Israel // Mol. Biol. Evol. 1986.V. 3. P. 547–558.
- Dong P., Wei Y.-M., Chen G.-Y. et al. Sequence‐related amplified polymorphism (SRAP) of wild emmer wheat (Triticum dicoccoides) in Israel and its ecological association // Biochem. Syst. Ecol. 2010. V. 38. P. 1–11.
- Dong P., Wei Y.-M., Chen G.-Y. et al. 2009. EST–SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel // Hereditas. 2009. V. 146. P. 1–10. https://doi.org/10.1111/j.1601-5223.2009.02098.x
- Haudry A., Cenci A., Ravel C. et al. Grinding up wheat: A massive loss of nucleotide diversity since domestication // Mol. Biol. Evol. 2007.V. 24. P. 1506–1517. https://doi.org/10.1093/molbev/msm077
- Ozkan H., Willcox G., Graner A. et al. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides) // Genet. Resour. Crop Evol. 2011. V. 58. P. 11–53. https://doi.org/10.1007/s10722-010-9581-5
- Ganugi P., Palchetti E., Gori M.et al. Molecular diversity within a mediterranean and European panel of tetraploid wheat (T. turgidum subsp.) landraces and modern germplasm inferred using a high-density SNP array // Agronomy. 2021. V. 11. P. 414. https://doi.org/10.3390/agronomy11030414
- Thuillet A.C., Bataillon T., Poirier S. et al. Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data // Genetics. 2005.V. 169. P. 1589–1599. https://doi.org/10.1534/genetics.104.029553
- Столетова E.A. Полба-эммер, Triticumdicoccum Schrank // Тр. поприкл. ботанике, генетике и селекции. 1924. Т. 14. Вып. 1. С. 27–98.
- Фляксбергер К.А. Пшеницы – род Triticum L. // Культурная флора СССР. Т. 1. Хлебные злаки. Л.: Сельхозгиз, 1935. С. 19–434.
- Цвелев Н.Н., Пробатова Н.С. Злаки России. М.: KMK., 2019. 649 с.
- Вавилов Н.И. Пшеницы Абиссинии и их положение в общей системе пшениц: к познанию 28-хромосомной группы культурных пшениц. Л.: ВИР., 1931. С. 221–228.
- Scott M.F., Botigué L.R., Brace S. et al. 3000-year-old Egyptian emmer wheat genome reveals dispersal and domestication history // Nat. Plants. 2019. V. 5. P. 1120–1128. https://doi.org/10.1038/s41477-019-0534-5
- Yadav I.S., Singh N., Wu S. et al. Exploring genetic diversity of wild and related tetraploid wheat species Triticum turgidum and Triticum timopheevii // J. Adv. Research. 2023. V. 48. P. 47–60. https://doi.org/10.1016/j.jare.2022.08.020
- Cavalli-Sforza L.L., Menozzi P., Piazza P. The history and geography of human genes. Princeton: PrincetonUniv. Press, 1994.
- Вавилов Н.И. Центры происхождения культурных растений // Тр. По прикл. ботанике и селекции. 1926. Т. 16. № 2. 248 c.
- Mellaart J. The Neolithic of the Near East. London: ThamesandHudson, 1975. 101 p.
- Harris D.R., Masson V.M., Berezin Y.E. et al. Investigating early agriculture in Central Asia: New research at Jeitun, Turkmenistan // Antiquity. 1993. V. 67. № 255. P. 324–338.
- Zaharieva M., Ayana N.G., Al Hakimi A. et al. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review // Genet. Resour. Crop Evol. 2010. V. 57. P. 937–962. https://doi.org/10.1007/s10722-010-9572-6
- Stevens C.J., Murphy C., Roberts R. et al. Between China and South Asia: A middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age // Holocene. 2016. V. 26. P. 1541–1555. https://doi.org/10.1177/0959683616650268
- Mani B. R. Further evidence on Kashmir Neolithic in the light of recent excavations at Kanishkapura // J. Interdisciplinary Studies in History and Archaeology. 2004. V. 1. P. 137–143.
- Nesbitt M., Samuel D. From staple crop to extinction? The archaeology and history of the hulled wheat // Hulled wheats: Promoting the Conservation and used of underutilized and neglected crops / Eds Padulosi S., Hammer K., Heller J. Rome: IPGRI, 1996. P. 40–99.
- Mehra K.L. The origin, domestication and selection of crops for specific Yemeni environments // Indigenous Knowledge and Sustainable Agriculture in Yemen / Eds Al-Hakimi A., Pelat F. Sana: Centre Français dʹArchéologie et de Sciences Sociales, Cahiers du CEFAS, 2003. P. 9–14.
- Hammer K., Gebauer J., Al Khanjari S., Buerkert A. Oman at the cross-road of inter-regional exchange of cultivated plants // Genet. Res. Crop Evol. 2009. V. 56. P. 547–560. https:doi.org.10.1007/s10722-008-9385-z
- Вавилов Н.И. Мировые ресурсы сортов хлебных злаков, зерновых бобовых, льна и их использование в селекции. М.: Наука, 1964. 122 с.
- Драгович А.Ю., Фисенко А.В., Янковская А.А. Гены яровизации (VRN) и фотопериода (PPD) у староместных яровых сортов гексаплоидной пшеницы // Генетика. 2021. T. 57. № 3. C. 332–344. https:doi.org.10.31857/S0016675821030061
- Пухальский В.А., Билинская Е.Н. Материалы по изучению генов гибридного некроза у сортообразцов вида Triticum dicoccum (Schrank) Schuebl // Генетика. 1999. Т. 35. № 10. С. 1390–1395.
- Weninger B., Clare L., Gerritsen F. et al. Neolithisation of the Aegean and Southeast Europe during the 6600–6000 calBC period of Rapid // Documenta Praehistorica XLI. 2014. V. 41. P. 1–31. https://doi.org/10.4312/dp.41.1
- Палагута И.В. Мир искусства древних земледельцев Европы. Культуры балкано-карпатского круга в VII–III тыс. до н.э. СПб.: Алетейя, 2012. 336 с.
- Periс S. Drenovac: A Neolithic settlement in the Middle Morava Valley, Serbia // Antiquity. 2017. V. 91. № 357. P. 11–33. https//doi.org/10.15184/aqy.2017.41
- Marinova E. Archaeobotanical data from the early Neolithic of Bulgaria // The Origins and Spread of Domestic Plants in Southwest Asia and Europe / Eds Colledge S., Connelly J. London: Institute of Archaeology, 2007. P. 93–109.
- Pashkevich G.F. Agriculture in East European steppe and forest-steppe in the Neolithic-Bronze Ages: paleoethnobotanical evidence // Stratum Plus. 2000. V. 2. P. 404–418.
- Baldia M.O. The Central and North European Neolithic. Copper Age Chronology // The Comparative Archaeology Web. 2006. https://www.comp-archaeology.org/Central_European_Neolithic_Chronology.html
- Тагиева E.H., Велиев C.C. Природные условия и первые земледельческо-скотоводческие культуры Азербайджана //Изв. РАН. Серия геогр. 2014. № 2. C. 103–115.
- LisitsinaG.N. The Caucasus, a centre of ancient farming in Eurasia // Plants and Ancient Man. / Eds van Zeis W., Casparie W.A. Rotterdam: Balkema, 1984. P. 285–292.
- Туганаев В.В., Туганаев А.В. Агроэкосистемы Предуралья и Среднего Поволжья: от начала земледелия до современности // Бюлл. бот. сада Саратовского гос. ун-та. 2009. № 8. С.25–46.
- Зинько В.Н., Пашкевич Г.А. Палеоботанические материалы из ранних комплексов Тиритаки // Боспорские исследования. 2010. Вып. ХХIV. С. 65–83.
- Артамонов М.И. История хазар. Л.: Изд-во Гос. Эрмитажа, 1962. 523 с.
- Плетнева С.А. От кочевий к городам. Салтово-маяцкая культура. М.: Наука, 1967. 200 с.
- Damania A.B., Valkoun J., Willcox G. et al. The origin of agriculture and crop domestication. Aleppo: ICARDA, 1998. 352 р.
- Муслимов М.Г., Исмаилов А.Б. Полба – ценная зерновая культура // Зерновое хозяйство России. 2012. №. 3. С. 40–42.
- Государственный реестр селекционных достижений, допущенных к использованию. Т.1. “Сорта растений” (официальное издание). М., 2023. https://reestr.gossortrf.ru/
- Clark J.A., Martin J.H., Ball C.R. Classification of American Wheat Varieties // Bull. USDAN 1074. Washington, 1922. 238 p.
- Рабинович С.В. Современные сорта пшеницы и их родословные. Киев: Урожай, 1972. 327 с.
- Hsam S.L.K., Huang X.Q., Zeller. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.). Alleles at the Pm5 locus // Theor. Appl. Genetics. 2001. V. 102. P. 127–133.
- Beuningen L.V., Bush R.H. Genetic diversity among North American spring wheat cultivars // Crop Sci. 1997. V. 37. P. 580–585. https://doi.org/10.2135/CROPSCI1997.0011183X003700030046X
- Luig N.H. A survey of virulence genes in wheat stem rust, Pucciniagraminis f. sp. Tritici // Suppl. to J. Plant Breed.: Advances in Plant Breeding. 1983. V. 11. 198 p.
- McIntosh R.A., Wellings C.R., Park R.F. Wheat rust. An atlas of resistance genes. Australia: CSIRO, 1995. 200 p.
- Сорта зерновых культур с известными генами устойчивости к грибным болезням // Каталог мировой коллекции ВИР. Вып. 453. Л.: ВИР, 1988. 79 с.
- Robe P., Doussinault G. Genetic analysis of powdery-mildew resistance of a winter wheat line, RE714, and identification of a new specific-resistance gene // Plant Breeding. 1995. V. 114. P. 387–391. https://doi.org/10.1111/j.1439-0523.1995.tb00817.x
- Liu X., Brown-Guedira G.L., Hatchett J.O. et al. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat // Theor. Appl. Genetics. 2005. V. 111. P. 1308–1315. https://doi.org/10.1007/s00122-005-0059-3
Arquivos suplementares
