Effect of equal channel angular pressing on the structure and mechanical properties of Al–6Ca–3Ce alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of equal-channel angular pressing (ECAP) on the structure and mechanical properties of experimental eutectic Al–6Ca–3Ce (wt %) alloy is studied. The ECAP of initial cast blanks is fulfilled under isothermal conditions at a temperature of 200°С using 4 passes and the BC route of extruding. As a result of ECAP, both the strength and plasticity of the alloy are found to increase by 2 and 5 to 15 times, respectively. The anisotropy of properties is found, i.e., the strength in the transverse direction is lower by 5 to 15%, whereas the relative elongation is 3 times higher than those along the lengthwise direction. The achieved combination of properties is due to the formation of ultrafine structure characterized by low density of dislocation and the refinement of eutectic particles. The higher plasticity of samples in the transverse direction is due to the lower length of boundaries of eutectic particles retarding the movement of dislocations.

全文:

受限制的访问

作者简介

V. Andreev

Baikov Institute of Metallurgy and Materials Science

Email: csaap@mail.ru
俄罗斯联邦, Moscow

M. Barykin

National Research Technological University MISiS

Email: csaap@mail.ru
俄罗斯联邦, Moscow

R. Karelin

Baikov Institute of Metallurgy and Materials Science, RAS; National Research Technological University MISiS

Email: csaap@mail.ru
俄罗斯联邦, Moscow; Moscow

V. Komarov

Baikov Institute of Metallurgy and Materials Science, RAS; National Research Technological University MISiS

Email: csaap@mail.ru
俄罗斯联邦, Moscow; Moscow

E. Naumova

National Research Technological University MISiS

Email: csaap@mail.ru
俄罗斯联邦, Moscow

S. Rogachev

Baikov Institute of Metallurgy and Materials Science; National Research Technological University MISiS

编辑信件的主要联系方式.
Email: csaap@mail.ru
俄罗斯联邦, Moscow; Moscow

N. Tabachkova

National Research Technological University MISiS

Email: csaap@mail.ru
俄罗斯联邦, Moscow

参考

  1. Наумова Е.А., Васина М.А., Черногорова О.П., Рогачев С.О., Задорожный М.Ю., Бобрышева А.О. Исследование влияния церия на структуру и свойства кальцийсодержащих алюминиевых сплавов // Металлург. 2023. № 9. С. 49–57.
  2. Shurkin P.K., Letyagin N.V., Yakushkova A.I., Samoshina M.E., Ozherelkov D.Y., Akopyan T.K. Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion // Mater. Letters. 2021. V. 285. P. 129074.
  3. Akopyan T.K., Belov N.A., Lukyanchuk A.A., Letyagin N.V., Sviridova Т.А., Petrova A.N., Fortuna A.S., Musin A.F. Effect of high pressure torsion on the precipitation hardening in Al–Ca–La based eutectic alloy // Mater. Sci. Eng. A. 2021. V. 802. P. 140063.
  4. Акопян Т.К., Летягин Н.В., Белов Н.А., Кошмин А.Н., Гизатулин Д.Ш. Анализ микроструктуры и механических свойств нового деформируемого сплава на основе ((Al) + Al4(Ca,La))-эвтектики // ФММ. 2020. Т. 121. № 9. С. 1003–1008.
  5. Shen S., Wu C., Li Y., Huang Y., Huang W., Zhang P., Zhong S., Lu Y., Luo G., Gan Z., Liu J. Refining mechanism and elevated-temperature mechanical properties of Al–Ce alloys solidified under super gravity field // Mater. Sci. Eng. A. 2023. V. 879. P. 145191.
  6. Weiss D. Improved High-Temperature Aluminum Alloys Containing Cerium // J. Mater. Eng. Performance. 2019. V. 28. N 4. P. 1903–1908.
  7. Czerwinski F. Cerium in aluminum alloys // J. Mater. Sci. 2020. V. 55. № 1. P. 24–72.
  8. Добромыслов А.В., Талуц Н.И. Структура сплавов системы Al–Fe, изготовленных разными методами, после интенсивной пластической деформации под давлением // ФММ. 2017. Т. 118. № 6. С. 595–602.
  9. Cepeda-Jiménez C.M., García-Infanta J.M., Zhilyaev A.P., Ruano O.A., Carreño F. Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion // J. Alloys Comp. 2011. V. 509. P. 636–643.
  10. Estrin J., Murashkin M., Valiev R. Ultrafine-grained aluminium alloys: processes, structural features and properties / in Fundamentals of aluminium metallurgy, by eds R.N. Lumley, Woodhead Publishing, UK, 2011. P. 468–503.
  11. Ширинкина И.Г., Петрова А.Н., Бродова И.Г., Пилюгин В.П., Антонова О.В. Фазовые и структурные превращения в алюминиевом сплаве АМц при разных методах интенсивной пластической деформации // ФММ. 2012. Т. 113. № 2. С. 181–186.
  12. Rogachev S.O., Naumova E.A., Lukina E.A., Zavodov A.V., Khatkevich V.M. High strength Al–La, Al–Ce, and Al–Ni eutectic aluminum alloys obtained by high-pressure torsion // Materials. 2021. V. 14. P. 6404.
  13. Rogachev S.O., Zavodov A.V., Naumova E.A., Chernenok T.V., Lukina E.A., Zadorozhnyy M.Yu. Improvement of strength–ductility balance of Al–Ca–Mn–Fe alloy by severe plastic deformation // Mater. Letters. 2023. V. 349. P. 134797.
  14. Glezer A.M. On the Relation between the Strength and the Plasticity of Metallic Materials // Russian Metallurgy (Metally). 2016. V. 2016. № 10. P. 906–907.
  15. Рогачев С.О. К управлению деформационным упрочнением и пластичностью металлических материалов в широком диапазоне температур // Деформация и разрушение материалов. 2023. № 10. С. 2–9.
  16. Murashkin M.Y., Sabirov I., Medvedev A.E., Enikeev N.A., Lefebvre W., Valiev R.Z., Sauvage X. Mechanical and electrical properties of an ultrafine grained Al–8.5 wt.% RE (RE= 5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation // Mater. Design. 2016. V. 90. P. 433–442.
  17. Medvedev A.E., Murashkin M.Y., Enikeev N.A., Bikmukhametov I., Valiev R.Z., Hodgson P.D., Lapovok R. Effect of the eutectic Al–(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al–4.5(Ce,La) alloy after SPD and subsequent annealing // J. Alloys Compounds. 2019. V. 796. P. 321–330.
  18. Рогачев С.О., Наумова Е.А., Табачкова Н.Ю., Тен Д.В., Сундеев Р.В., Задорожный М.Ю. Влияние кручения под высоким давлением на структуру и механические свойства сплава Al–Ca–Cu // ФММ. 2023. Т. 124. № 6. С. 550–556.
  19. Ivanisenko Yu., Lojkowski W., Valiev R.Z., Fecht H.-J. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion // Acta Mater. 2003. V. 51. N. 18. P. 5555–5570.
  20. Sauvage X., Cuvilly F., Russell A., Edalati K. Understanding the role of Ca segregation on thermal stability, electrical resistivity and mechanical strength of nanostructured aluminum // Mater. Sci. Eng. A. 2020. V. 798. P. 140108.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Microstructure of the Al–6Ca–3Ce alloy in the cast state (optical microscopy).

下载 (42KB)
3. Fig. 2. Microstructure of the Al–6Ca–3Ce alloy formed as a result of ECAP, in the transverse (a) and longitudinal (b) sections of the sample (optical microscopy). The arrow indicates the pressing direction.

下载 (82KB)
4. Fig. 3. Microstructure of the Al–6Ca–3Ce alloy after ECAP, observed in the transverse (a, b) and longitudinal (c, d) sections of the sample (transmission microscopy). In Fig. 3a: 1, 2 — areas in which the MRSA analysis was performed.

下载 (82KB)
5. Fig. 4. Results of MRSA analysis of the Al–6Ca–3Ce alloy after ECAP: (a) spectrum in region No. 1 in Fig. 3a; (b) spectrum in region No. 2 in Fig. 3a.

下载 (29KB)
6. Fig. 5. X-ray diffraction patterns of the Al–6Ca–3Ce alloy after ECAP, obtained in the longitudinal and transverse sections of the sample.

下载 (29KB)
7. Fig. 6. Stress-strain curves of the Al–6Ca–3Ce alloy before and after ECAP.

下载 (14KB)