Thermal And Spin-Orbital Effects Under The Action Of Current On Spin Valves Containing β-Ta and NiFeCr alloy layers

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For microobjects based on spin valves, changes in the magnetic state are observed under the action of short-term direct current. It has been shown that the magnetic moment of the free layer rotates when a certain current density is attained. The rotation angle grows with increasing current density. The magnetic moment rotates predominantly due to the thermal effect of current. Rotation angle changes caused by spin accumulation in Ta or NiFeCr layers and the transfer of the spin-orbit torque of electrons to the magnetic moment of the free layer have been revealed.

Full Text

Restricted Access

About the authors

L. I. Naumova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

R. S. Zavornitsyn

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

М. А. Milyaev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

А. А. Germizina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

I. К. Maksimova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

Т. А. Chernyshova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

A. Yu. Pavlova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

V. V. Proglyado

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

V. V. Ustinov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: naumova@imp.uran.ru
Russian Federation, Ekaterinburg

References

  1. Самардак А.С., Давыденко А.В., Стеблий М.Е., Огнев А.В. Топологически нетривиальные спиновые текстуры в тонких магнитных пленках // ФММ. 2022. Т. 123. С. 260–283.
  2. Звездин К.А., Екомасов Е.Г. Спиновые токи и нелинейная динамика вихревых спин-трансферных наноосцилляторов // ФММ. 2022. Т. 123. С. 219–239.
  3. Fert A., Ramesh R., Garcia V., Casanova F., Bibes M. Electrical control of magnetism by electric field and current-induced torques // Rev. Mod. Phys. 2024. V. 96. P. 015005.
  4. Shao Q., Li P., Liu L., Yang H., Fukami S., Razavi A., Wu H., Wang K., Freimuth F., Mokrousov Yu., Stiles M.D., Emori S., Hoffman A., Akerman J., Roy K., Wang J-P., Yang S-H., Garello K., Zhang W. Roadmap of spin-orbit torques // IEEE Trans. Magn. 2021. V. 57. P. 1–39.
  5. Manchon A., Zelezny J., Miron I.M., Jungwirth T., Sinova J., Thiaville A., Garello K., Gambardella P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems // Rev. Mod. Phys. 2019. V. 91. P. 035004.
  6. Han X., Wang X., Wan C., Yu G., Lv X. Spin-orbit torques: Materials, physics, and devices // App. Phys. Lett. 2021. V. 118. P. 120502.
  7. Velez S., Golovach V.N., Bedoya-Pinto A., Isasa M., Sagasta E., Abadia M., Rogero C., Hueso L.E., Bergeret F.S., Casanova F. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling // Phys. Rev. Lett. 2016. V. 116. P. 016603.
  8. Li J., Comstock A.H., Sun D., Xu X. Comprehensive demonstration of spin Hall Hanle effects in epitaxial Pt thin films // Phys. Rev. B. 2022. V. 106. P. 184420.
  9. He Z., Zhao Y., Zhao S., Li Y., Liu J., Zha X., Zhao M., Du Y., Wang R., Jiang Y., Zhou Z., Liu M. Enhancing spin-orbit torques with a low voltage in metallic multi-layered heterostructures // J. Appl. Phys. 2023. V. 134. P. 153901.
  10. Wang W., Liu J., Su W., Han Y., Du Q., Wu J., Hu Z., Wang C., Jiang Z., Wang Z., Liu M. Heat-assisted magnetization switching in flexible spin-orbit torque devices // Nano Lett. 2024. V. 24. P. 2003–2010.
  11. Garello K., Miron I.M., Avci C.O., Freimuth F., Mokrousov Y., Blugel S., Auffret S., Boulle O., Gaudin G., Gambardella P. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures // Nat. Nanotech. 2013. V. 8. P. 587–593.
  12. Liu L., Lee O.J., Gudmundsen T.J., Ralph D.C., Buhrman R.A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from spin hall effect // Phys. Rev. Lett. 2012. V. 109. P. 096602.
  13. Fukami S., Anekawa T., Zhang C., Ohno H. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration // Nat. Nanotech. 2016. V. 11. P. 621–626.
  14. Zhu L., Ralph D.C., Buhrman R.A. Maximizing spin-orbit torque generated by the spin Hall effect of Pt // App. Phys. Rev. 2021. V. 8. P. 031308.
  15. Zhang X., Wan C.H., Yuan Z.H., Zhang Q.T., Wu H., Huang L., Kong W.J., Fang C., Khan U., Han X.F. Electrical control over perpendicular magnetization switching driven by spin-orbit torques // Phys. Rev. B. 2016. V. 94. P. 174434.
  16. Dai N.V., Thuan N.C., Hong L.V., Phuc N.X., Lee Y.P., Wolf S.A., Nam D.N.H. Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer // Phys. Rev. B. 2008. V. 77 P. 132406.
  17. Tang X.L., Zhang H.W., Su H., Jing Y.L., Zhong Z.Y. Changing the exchange bias of spin valves by means of current pulses: Role of the Joule heating // J. Appl. Phys. 2009. V. 105. P. 073914.
  18. Kang J., Ryu J., Choi J.-G., Lee T., Park J., Lee S., Jang H., Jung Y.S., Kim K.-J., Park B.-G. Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures // Nature Comm. 2021. V. 12. P. 6420.
  19. Liu L., Pai C.-F., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum // Sci. 2012. V. 336. P. 555–558.
  20. Inokuchi T., Yoda H., Kato Y., Shimizu M., Shirotori S., Shimomura N., Koi K., Kamiguchi Y., Sugiyama H., Oikawa S., Ikegami K., Ishikawa M., Altansargai B., Tiwari A., Ohsawa Y., Saito Y., Kurobe A. Improved read disturb and write error rates in voltage-control spintronics memory (VoCSM) by controlling energy barrier height // Appl. Phys. Lett. 2017. V. 110. P. 252404 (1–4).
  21. Pai C.-F., Liu L., Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten // Appl. Phys. Lett. 2012. V 101. P. 122404 (1–4).
  22. Lau Y.-C., Betto D., Rode K., Coey J.M.D., Stamenov P. Spin–orbit torque switching without an external field using interlayer exchange coupling // Nature Nanotechnology. 2016. V. 11. P. 758–763.
  23. Yan S., Chen W., Zhou Z., Li Z., Cao Z., Lu S., Zhu D., Zhao W., Leng Q. Reversal of the Pinning Direction in the Synthetic Spin Valve with a NiFeCr Seed Layer // Nanomaterials. 2022. V. 12. P. 2077.
  24. Bannikova N.S., Milyaev M.A., Naumova L.I., Krinitsina T.P., Patrakov E.I., Proglyado V.V., Chernyshova T.A., Ustinov V.V. NiFeCo/Cu Superlattices with High Magnetoresistive Sensitivity and Weak Hysteresis // Physics of the Solid State. 2016. V. 58. N. 10. P. 2011–2017.
  25. Vas’ko V.A., Kief M.T. Effect of grain size on the properties of the CoFe–NiFe/NiMn top spin valve // J. Appl. Phys. 2003. V. 93. P. 8409.
  26. An Y., Liu J., Ma Y. Influence of seed layer on structure and magnetic properties of NiFe/PtMn bilayers // J. Appl. Phys. 2008. V. 103. P. 013905 (1–5).
  27. Bose A., Singh H., Kushwaha V.K., Bhuktare S., Dutta S., Tulapurkar A.A. Sign Reversal of Fieldlike Spin-Orbit Torque in an Ultrathin Cr/Ni Bilayer // Phys. Rev. Appl. 2018. V. 9. P. 014022 (8).
  28. Bleser S.M., Greening R.M., Roos M.J., Hernandez L.A., Fan X., Zink B.L. Negative spin Hall angle and large spin-charge conversion in thermally evaporated chromium thin films // J. Appl. Phys. 2022. V. 131. P. 113904 (1–7).
  29. Qu D., Huang S.Y., Chien C.L. Inverse spin Hall effect in Cr: Independence of antiferromagnetic ordering // Phys. Rev. B. 2015. V. 92. P. 020418 (R).
  30. Abadias G., Colin J.J., Tingaud D., Djemi Ph., Belliard L., Tromas C. Elastic properties of α- and β-tantalum thin films // Thin Solid Films. 2019. V. 688. P. 137403.
  31. Ellis E.A.I., Chmielus M., Baker Sh.P. Effect of sputter pressure on Ta thin films: Beta phase formation, texture, and stresses // Acta Mater. 2018. V. 150. P. 317–326.
  32. Magnuson M., Greczynski G., Eriksson F., Hultman L., Högberg H. Electronic Structure of b-Ta Films from X-ray Photoelectron Spectroscopy and First-principles Calculations // Appl. Sulf. Sci. 2019. V. 470. P. 607–612.
  33. Наумова Л.И., Заворницын Р.С., Миляев М.А., Девятериков Д.И., Русалина А.С., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Устинов В.В. Гелимагнитная и кристаллографическая текстуры роста нанослоев диспрозия на буферных слоях Co90Fe10, Nb и β-Ta // ФММ. 2023. Т. 124. С. 692–702.
  34. Устинов В.В., Наумова Л.И., Заворницын Р.С., Ясюлевич И.А., Максимова И.К., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Миляев М.А. Размерные эффекты в магнитосопротивлении нанослоев тантала со спин-орбитальным взаимодействием // ЖЭТФ. 2024. Т. 165. С. 114–127.
  35. Devonport A., Vishina A., Singh R.K., Edwards M., Zheng K., Domenico J., Rizzo N.D., Kopas C., van Schilfgaarde M., Newman N. Magnetic properties of chromium-doped Ni80Fe20 thin films // J. Magn. Magn. Mater. 2018. V. 460. P. 193–202.
  36. Wu H., Zhang X., Wan C.H., Tao B.S., Huang L., Kong W.J., Han X.F. Hanle magnetoresistance: The role of edge spin accumulation and interfacial spin current // Phys. Rev. B. 2016. V. 94. P. 174407.
  37. King J.P., Chapman J.N., Kools J.C.S., Gillies M.F. On the free layer reversal mechanism of FeMn-biased spin-valves with parallel anisotropy // J. Phys. D: Appl. Phys. 1999. V. 32. P. 1087–1096.
  38. Kools J.C.S. Exchange-biased spin-valves for magnetic storage // IEEE Trans. Magn. 1996. V. 32 (4). P. 3165–3184.
  39. Kryder M.H., Gage E.C., McDaniel T.W., Challener W.A., Rottmayer R.E., Ju G., Hsia Y.-T., Erden M.F. Heat Assisted Magnetic Recording // Proc. IEEE. 2008. V. 96. N. 11. P. 1810 –1835.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a two-layer structure of a nonmagnetic metal/ferromagnet, magnetic moment M, components τDL and τFL (a) and the corresponding effective fields HDL and HFL (b). The electric current flowing in the NM layer along the x-axis generates a spin current along the z-axis with spin polarization σ, collinear with the y-axis (σ = ±y).

Download (24KB)
3. Fig. 2. Field dependences of the longitudinal (dark symbols) and transverse (light symbols) electrical resistance of a 3 nm thick [Ni80Fe20]60Cr40 alloy film, obtained at temperatures of 93, 193 and 293 K.

Download (42KB)
4. Fig. 3. Field dependences of magnetoresistance of Ni–FeCr/NiFe/FeMn/CoFe/Cu/CoFe/[Ta or NiFeCr] spin valves with different compositions of the upper protective layer.

Download (23KB)
5. Fig. 4. (a) Photograph of the microobject for studying the magnetic structure; (b) images of the magnetic structure of the spin valve microstrips after passing current (left) and without passing current (right).

Download (21KB)
6. Fig. 5. Dependences of the spin valve resistance after passing current on the current density, obtained in an external magnetic field H equal in magnitude to H1 (a) and H2 (b). Field dependences of the spin valve electrical resistance, measured before (light circles) and after (dark triangles) passing direct current pulses (c).

Download (27KB)
7. Fig. 6. Values ​​of angles between the magnetic moment of the free layer and the OOA depending on the density and direction of the current in the spin valves of the NiFeCr/NiFe/FeMn/CoFe/Cu/CoFe/NiFeCr (a) and NiFeCr/NiFe/FeMn/CoFe/Cu/CoFe/Ta (b) compositions with different compositions of the non-magnetic metal in the upper protective layer. The light and dark symbols show the dependences obtained in external fields H1 and H2, counter- and co-directed to the OOA, respectively.

Download (32KB)
8. Fig. 7. Dependences of the electrical resistance of the NiFeCr/NiFe/FeMn/CoFe/Cu/CoFe/NiFeCr spin valve sample on temperature (solid line) and on the current density at an initial temperature of 203 K and passing a direct current (symbols). The dashed line shows the result of the approximation by a second-order polynomial.

Download (17KB)
9. Fig. 8. Schematic representation of the rotation of the magnetic moment of the free layer in a fixed field H antiparallel (a, c) and parallel (b, d) to the OOA after passing a current in the same direction (a, b) and opposite (c, d) to the initial direction of the magnetic moment.

Download (41KB)