Влияние высокотемпературного отжига в кислороде на свойства пленок оксида гафния, синтезированных методом атомно-слоевого осаждения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследовано влияние импульсного отжига на кристаллизацию пленок оксида гафния, синтезированных методом атомно-слоевого осаждения. Разработана модель кристаллизации. Эксперимент и моделирование показывают, что механизм кристаллизации достаточно сложный и зависит от температуры. При температурах отжига 600–700 °C кристаллизация носит диффузионный характер: кислород диффундирует в пленку, взаимодействует с вакансиями кислорода и избыточным гафнием, происходит рост нанокристаллов. При более высоких температурах энергия активации процесса кристаллизации возрастает и становится больше энергии активации диффузии кислорода. Предполагается, что в процессе кристаллизации может принимать участие дважды ионизованная вакансия кислорода.

Full Text

Restricted Access

About the authors

С. В. Булярский

Институт нанотехнологий микроэлектроники Российской академии наук

Author for correspondence.
Email: litkristy@gmail.com
Russian Federation, Москва

К. И. Литвинова

Институт нанотехнологий микроэлектроники Российской академии наук

Email: litkristy@gmail.com
Russian Federation, Москва

А. А. Шибалова

Институт нанотехнологий микроэлектроники Российской академии наук

Email: litkristy@gmail.com
Russian Federation, Москва

References

  1. Banerjee W., Kashir A., Kamba S. Hafnium Oxide (HfO2) – a Multifunctional Oxide: A Review on the Prospect and Challenges of Hafnium Oxide in Resistive Switching and Ferroelectric Memories // Small. 2022. V. 18. № 23. P. 2107575. https://doi.org/10.1002/smll.202107575
  2. Gritsenko V.A., Perevalov T.V., Islamov D.R. Electronic Properties of Hafnium Oxide: a Contribution from Defects and Traps // Phys. Rep. 2016. V. 613. P. 1–20. https://doi.org/10.1016/j.physrep.2015.11.002
  3. Chowdhury N.A., Misra D. Charge Trapping at Deep States in Hf–Silicate Based High-Κ Gate Dielectrics // J. Electrochem. Soc. 2006. V. 154. № 2. P. G30. https://doi.org/10.1149/1.2402989
  4. Hsu C.Y., Chang H.G., Chen M.J. A Method of Extracting Metal-Gate High- K Material Parameters Featuring Electron Gate Tunneling Current Transition // IEEE Trans. Electron Devices. 2011. V. 58. № 4. P. 953–959. https://doi.org/10.1109/TED.2011.2105270
  5. Kasabov N., Sidorov I.A., Dimitrov D.S. Computational Intelligence, Bioinformatics and Computational Biology: a Brief Overview of Methods, Problems and Perspectives // J. Comput. Theor. Nanosci. 2005. V. 2. № 4. P. 473–491. https://doi.org/10.1166/jctn.2005.002
  6. Bersuke G., Gilmer D. C., Veksler et al. Metal Oxide Rram Switching Mechanism Based on Conductive Filament Microscopic Properties // International Electron Devices Meeting. 2010. P. 19.6. 1–19.6. 4. https://doi.org/10.1063/1.3671565
  7. Yu S., Guan X., Wong H. S. P. Conduction Mechanism of TiN/HfOx/Pt Resistive Switching Memory: a Trap-Assisted-Tunneling Model // Appl. Phys. 2011. V. 99. № 6. https://doi.org/10.1063/1.3624472
  8. Martin D., Yurchuk E., Mülle, S. et al. Downscaling Ferroelectric Field Effect Transistors by Using Ferroelectric Si-Doped HfO2 // Solid-State Electron. 2013. V. 88. P. 65–68.
  9. Müller J., Schröder U., Böscke T. S. et al. Ferroelectricity in Yttrium-Doped Hafnium Oxide // J. Appl. Phys. 2011. V. 110. № 11. P. 114113. https://doi.org/10.1109/ULIS.2012.6193391
  10. Martínez-Puente M.A., Horley P., Aguirre-Tostado F.S. et al. Ald and Peald Deposition of HfO2 and Its Effects on the Nature of Oxygen Vacancies // Mater. Sci. Eng. B. 2022. V. 285. P. 115964. https://doi.org/10.1016/j.mseb.2022.115964
  11. Zhang X.Y., Hsu C.H. et al. RAPID Thermal Processing of Hafnium Dioxide Thin Films by Remote Plasma Atomic Layer Deposition as High-K Dielectrics // Thin Solid Films. 2018. V. 660. P. 797–801. https://doi.org/10.1016/j.tsf.2018.03.055
  12. Yan K., Yao W. et al. Oxygen Vacancy Induced Structure Change and Interface Reaction in HfO2 Films on Native SiO2/Si Substrate // Appl. Surf. Sci. 2016. V. 390. P. 260–265. https://doi.org/10.1016/j.apsusc.2016.08.051
  13. Pandey S., Kothari P., Verma S. et al. Impact of Post Deposition Annealing in N2 Ambient on Structural Properties of Nanocrystalline Hafnium Oxide Thin Film // J. Mater. Sci. - Mater. Electron. 2017. V. 28. P. 760–767. https://doi.org/10.1007/s10854-016-5587-x
  14. Xiong K., Robertson J., Clark S. J. Passivation of Oxygen Vacancy States in HfO2 by Nitrogen // J. Appl. Phys. 2006. V. 99. № 4. https://doi.org/10.1063/1.2173688
  15. Pandey S., Kothari P., Sharma S.K. et al. Impact of Post Deposition Annealing in O2 Ambient on Structural Properties of Nanocrystalline Hafnium Oxide Thin Film // J. Mater. Sci. - Mater. Electron. 2016. V. 27. P. 7055–7061. https://doi.org/10.1007/s10854-016-4663-6
  16. Islamov D.R., Gritsenko V.A., Kruchinin V.N. et al. The Evolution of the Conductivity and Cathodoluminescence of the Films of Hafnium Oxide in the Case of a Change in the Concentration of Oxygen Vacancies // Phys. Solid State. 2018. V. 60. P. 2050–2057. https://doi.org/10.1134/S1063783418100098
  17. Zhang X.Y., Hsu C.H., Cho Y.S. et al. Rapid Thermal Processing of Hafnium Dioxide Thin Films by Remote Plasma Atomic Layer Deposition as High-K Dielectrics // Thin Solid Films. 2018. V. 660. P. 797–801. https://doi.org/10.1016/j.tsf.2018.03.055
  18. Starschich S., Menzel S., Böttger U. Evidence for Oxygen Vacancies Movement During Wake-up in Ferroelectric Hafnium Oxide // Appl. Phys. Lett. 2016. V. 108. № 3. P. 032903-1–032903-5. http://dx.doi.org/10.1063/1.4940370
  19. Bulyarskiy S.V., Koiva D.A., Gusarov G.G. et al. Crystallization of Amorphous Titanium Oxide Films upon Annealing in an Oxygen Atmosphere // Mater. Sci. Eng. B. 2022. V. 283. P. 115802. https://doi.org/10.1016/j.mseb.2022.115802
  20. Булярский С.В., Литвинова К.И., Кириленко Е.П., Рудаков Г.А., Дудин А.А. Фотолюминесценция оксида гафния, синтезированного методом атомно-слоевого осаждения // Физика твердого тела. 2023. T. 65. C. 236–242. https://doi.org/10.21883/FTT.2023.02.54296.524
  21. Park J. C., Yoon Y. S., Kang S. J. et al. Structural and Optical Properties of HfO2 Films on Sapphire Annealed in O2 Ambient // J. Korean Ceram. Soc. 2016. V. 53. P. 563–567.
  22. D’Acunto G., Troian A., Kokkonen E. et al. Atomic Layer Deposition of Hafnium Oxide on Inas: Insight from Time-Resolved In Situ Studies // ACS Appl. Electron. Mater. 2020. V. 2. № 12. P. 3915–3922. https://doi.org/10.4191/kcers.2016.53.5.563
  23. Ramo D. M., Gavartin J. L., Shluger A. L. et al. Spectroscopic Properties of Oxygen Vacancies in Monoclinic HfO2 Calculated with Periodic and Embedded Cluster Density Functional Theory // Phys. Rev. B. 2007. V. 75. № 20. P. 205336. https://doi.org/10.1103/PhysRevB.75.205336
  24. Villa I., Vedda A., Fasoli M. et al. Size-Dependent Luminescence in HfO2 Nanocrystals: Toward White Emission from Intrinsic Surface Defects // Chem. Mater. 2016. V. 28. № 10. P. 3245–3253. https://doi.org/10.1021/acs.chemmater.5b03811
  25. Rastorguev A. A., Belyi V. I., Smirnova T. P. et al. Luminescence of Intrinsic and Extrinsic Defects in Hafnium Oxide Films // Phys. Rev. B. 2007. V. 76. № 23. P. 235315. https://doi.org/10.1103/PhysRevB.76.235315
  26. Ридли Б. Квантовые процессы в полупроводниках. М.: Мир, 1986. 304 с.
  27. Bulyarskiy S. V., Gorelik V. S., Gusarov G. G. et al. The Influence of Electron–Phonon Interaction on Photoluminescence of Titanium Oxide in the Near-Infrared Spectral Range // Opt. Spectrosс. 2020. V. 128. P. 590–595. https://doi.org/10.1134/S0030400X20050057
  28. Bulyarskiy S. V., Svetukhin V. V. Kinetics of the Formation and Doping of Silicon Nanocrystals // J. Nanopart. Res. 2020. V. 22. № 12. P. 361. https://doi.org/10.1007/s11051-020-05069-1
  29. Bulyarskiy S. V., Svetukhin V. V. A Kinetic Model of Silicon Nanocrystal Formation // Silicon. 2021. V. 13. № 10. P. 3321–3327. https://doi.org/10.1007/s12633-020-00703-y
  30. Ham F. S. Theory of Diffusion-Limited Precipitation // J. Phys. Chem. Solids. 1958. V. 6. № 4. P. 335–351. https://doi.org/10.1016/0022-3697(58)90053-2
  31. Ham F. S. Diffusion‐Limited Growth of Precipitate Particles // J. Appl. Phys. 1959. V. 30. № 10. P. 1518–1525. https://doi.org/10.1063/1.1734993
  32. Slezov V. V., Schmelzer J. Kinetics of Formation and Growth of a New Phase with a Definite Stoichiometric Composition // J. Phys. Chem. Solids. 1994. V. 55. № 3. P. 243–251. https://doi.org/10.1103/PhysRevE.65.031506
  33. He R., Wu H., Liu S., Liu H. et al. Charged Oxygen Vacancy Induced Ferroelectric Structure Transition in Hafnium Oxide: arXiv preprint arXiv:2106.12159. 2021. https://doi.org/10.48550/arXiv.2106.12159
  34. Capron N., Broqvist P., Pasquarello A. Migration of Oxygen Vacancy in HfO2 and across the HfO2∕ SiO2 Interface: a First-Principles Investigation // Appl. Phys. Lett. 2007. V. 91. № 19. https://doi.org/10.1063/1.2807282
  35. Kumar S., Wang Z., Huang X. et al. Conduction Channel Formation and Dissolution due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors // ACS Nano. 2016. V. 10. № 12. P. 11205–11210. https://doi.org/10.1021/acsnano.6b06275
  36. Ikeda M., Kresse G., Nabatame T., Toriumi A. Theoretical Analysis of Oxygen Diffusion in Monoclinic HfO2 // MRS Online Proc. Library (OPL). 2003. V. 786. https://doi.org/10.1557/PROC-786-E5.4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms of hafnium oxide samples after heat treatment at 400, 700, 1000 °C (a) and the average size of crystallites forming the film calculated by formula (1) (points), approximation by formula (5) (b)

Download (203KB)
3. Fig. 2. Kinetics of refractive index change of hafnium oxide film during annealing at 600 °C (a) and refractive index deviation from the stationary value after annealing at 600 °C (b)

Download (93KB)
4. Fig. 3. Dependence of time constant on inverse temperature

Download (54KB)
5. Fig. 4. PL spectrum of hafnium oxide films annealed in oxygen at 700 °C (bands 1-5 of the experimental spectrum are approximated by Gaussian functions) (a); temperature dependence of the transition probability (b)

Download (130KB)

Copyright (c) 2024 Russian Academy of Sciences