Синтез кальций-фосфатных слоев на биоактивных композитах TiO2–SiO2–P2O5/CaO и TiO2–SiO2–P2O5/La2O3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе установлены свойства карбоксильного ионита с дивинилбензольной матрицей по отношению к ионам кальция и лантана(III). Золь–гель-методом получены композиты TiO2–SiO2–P2O5/CaO и TiO2–SiO2–P2O5/La2O3 на основе катионита «Токем-250». Выявлены особенности фазообразования и физико-химических свойств полученных материалов. Установлено, что на поверхности материалов TiO2–SiO2–P2O5/CaO и TiO2–SiO2–P2O5/La2O3 в жидкости, имитирующей внутреннюю среду организма человека, способен образовываться кальций-фосфатный слой.

Full Text

Restricted Access

About the authors

В. А. Ткачук

Национальный исследовательский Томский государственный университет

Author for correspondence.
Email: tk_valeria@bk.ru
Russian Federation, Томск

Е. С. Лютова

Национальный исследовательский Томский государственный университет

Email: tk_valeria@bk.ru
Russian Federation, Томск

Л. П. Борило

Национальный исследовательский Томский государственный университет

Email: tk_valeria@bk.ru
Russian Federation, Томск

Л. Н. Спивакова

Национальный исследовательский Томский государственный университет

Email: tk_valeria@bk.ru
Russian Federation, Томск

А. А. Бузаев

Национальный исследовательский Томский государственный университет

Email: tk_valeria@bk.ru
Russian Federation, Томск

References

  1. Chen F.M., Liu X. Advancing Biomaterials of Human Origin for Tissue Engineering // Prog. Polym. Sci. 2016. V. 1. P. 86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004
  2. Iismaa S.E., Kaidonis X., Nicks A.M., Bogush N., Kikichi K. et al. Comparative Regenerative Mechanisms across Different Mammalian Tissues // NPJ Regen Med. 2018. V. 3. № 1. P. 1–20. https://doi.org/10.1038/s41536-018-0044-5
  3. Williams D. F. Challenges with the Development of Biomaterials for Sustainable Tissue Engineering // Front. Bioeng. Biotechnol. 2019. V. 7. P. 127–137. https://doi.org/10.3389/fbioe.2019.00127
  4. Martin I., Miot S., Barbero A., Jakob M., Wendt D. Osteochondral Tissue Engineering // J. Biomech. 2007. V. 40. № 4. P. 750–765. https://doi.org/10.1016/j.jbiomech.2006.03.008.
  5. Wasyleczko M., Sikorska W., Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering // Membranes. 2020. V. 10. P. 348. https://doi.org/
  6. Rezwan K., Chen Q.Z., Blaker J.J., Boccaccin A.R. Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering // Biomaterials. 2006. № 27. P. 3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
  7. Denry I., Kuhn L.T. Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering // Dent. Mater. 2016. V. 32. № 1. P. 43–53. https://doi.org/
  8. Tavoni M., Dapporto M., Tampieri A., Sprio S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration // J. Compos. Sci. 2021. V. 5. № 9. P. 227. https://doi.org/
  9. Erceg I., Selmani A., Gajović A., Panžić A., Iveković D., Faraguna F. et al. Calcium Phosphate Formation on TiO2 Nanomaterials of Different Dimensionality // Colloids Surf., A. 2020. V. 593. P. 124615. https://doi.org/
  10. Yao H-L., Hu X-Z., Bai X-B., Wang X-T., Chen Q-Y, Ji G-C. Comparative Study of HA/TiO2 and HA/ZrO2 Composite Coatings Deposited by High-Velocity Suspension Flame Spray (HVSFS) // Surf. Coat.Technol. 2018. V. 351. P. 177–187. https://doi.org/
  11. Zakhireh S., Barar J., Adibkia K., Beygi-Khosrowshahi Y., Fathi M., Omidain H. et al. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration // Top. Curr. Chem. 2022. V. 380. № 2.P. 1–13. https://doi.org/
  12. Chaikina M.V., Komarova E.G., Sharkeev Y.P., Bulina N.V., Prosanov I.Y. Lanthanum-Silicon-Substituted Hydroxyapatite: Mechanochemical Synthesis and Prospects for Medical Applications // AIP Conf. Рroc. 2016. V. 1760. https://doi.org/10.1063/1.4960228
  13. Brokesh A.M., Gaharwar A.K. Inorganic Biomaterials for Regenerative Medicine //ACS Applied Materials & Interfaces. 2020. https://doi.org/10.1021/acsami.9b17801
  14. Salama A. Recent Progress in Preparation and Applications of Chitosan/Calcium Phosphate Composite Materials // Int. J. Biolog. Macromol. 2021. V. 178. P. 240–252. https://doi.org/
  15. Shang R., Liu C., Quan P., Zhao H., Fang L. Effect of Drug-Ion Exchange Resin Complex in Betahistine Hydrochloride Orodispersible Film on Sustained Release, Taste Masking and Hygroscopicity Reduction // Int. J. Pharmaceutics. 2018. V. 545. № 1. P. 163–169. https://doi.org/
  16. Adelli G.R., Balguri S.P., Bhagav P., Raman V., Majumdar S. Diclofenac Sodium Ion Exchange Resin Complex Loaded Melt Cast Films for Sustained Release Ocular Delivery // Drug Delivery. 2017. V. 24. № 1. P. 370–379. https://doi.org/10.1080/10717544.2016.1256000)
  17. Kozik V.V., Borilo L.P., Lyutova E.S., Chen Yu-Wen. Influence of Composition and Preparation Conditions on the Structure and Properties of Composite Materials TiO2-SiO2/CaO with Spherical Particle Shape Based on Tokem-200 Cationic Exchange Resins // ACS Omega. 2021. V. 6(32). Р. 21104–21112.
  18. Kokubo T. Bioactive Glass Ceramics: Properties and Applicarions // Biomaterials. 1991. V. 12. P. 155–163. https://doi.org/10.1016/0142-9612(91)90194-F
  19. Rasskazova L.A., Zhuk I.V., Korotchenko N.M., Brichkov A.S., Chen Y.-W., Paukshtis E.A., Kozik V.V. Synthesis of Magnesium- and Silicon-Modified Hydroxyapatites by Microwave-Assisted Method // Sci.Rep. 2019. V. 9. № 1. https://doi.org/
  20. Vijayan V., Lakra R., Korrapati P.S., Kiran M.S. Lanthanum Oxide Nanoparticle-Collagen Bio Matrix Induced Endothelial Cell Activation for Sustained Angiogenic Response for Biomaterial Integration // Colloids Surf. B: Biointerfaces. 2022. V. 216. https://doi.org/
  21. Hench L. L. Bioceramics: From Concept to Clinic // J. Am. Ceram. Soc. 1991. V. 7. P. 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of samples after drying at 60 °C (a), after annealing at 600 °C (b)

Download (137KB)
3. Fig. 2. Graph of Ca2+ and Mg2+ ions accumulation on the surface of samples after immersion in SBF-solution: 1 - sample TiO2-SiO2-P2O5/CaO, 2 - sample TiO2-SiO2-P2O5/La2O3, 3 - sample with the ratio TiO2-SiO2-P2O5/CaO : TiO2-SiO2-P2O5/La2O3 = 1 : 1

Download (67KB)
4. Fig. 3. Microphotographs of samples (a-c) and distribution of elements along the line (d-e) after immersion in SBF-solution for 14 days: a, d - sample TiO2-SiO2-P2O5-P2O5/CaO; b, e - sample TiO2-SiO2-P2O2-P2O5/La2O3; c, f - sample with the ratio TiO2-SiO2-P2O2-P2O5/CaO : TiO2-SiO2-P2O5/La2O3 = 1 : 1

Download (659KB)

Copyright (c) 2024 Russian Academy of Sciences