Model of a magnetically levitated train's levitation force

Cover Page

Abstract


Model of a magnetically levitated train's levitation force


Full Text

Сложность электромеханических процессов в левитационных узлах (ЛУ) магнитолевитирующих поездов (МЛП) стимулирует поиск возможностей сепаратного изучения слагающих компонентов. Моделирование этих компонентов вполне возможно в рамках парадигм теорий электрических цепей и электромагнитного поля. Поэтому существующие версии математической модели левитационной силы (ММЛС) МЛП построены [1, 2] исходя из упомянутых парадигм. Каждая из имеющихся версий ММЛС МЛП обладает преимуществами и недостатками. Их общая положительная черта – достаточная функциональность. Основной же имманентный недостаток таких версий – нестационарность дифференциальных уравнений. Это существенно снижает практическую ценность версий модели. Отмеченное выявляет [3, 4] актуальность создания ММЛС МЛП, ассимилирующей достоинства имеющихся версий модели и максимально свободной от их недостатков. Построение такой ММЛС – основная задача работы.

Электромеханическое энергопреобразование ЛУ МЛП осуществляется в процессе взаимодействия полей токов сверхпроводящих поездных контуров (СПК) и дискретных путевых контуров (ДПК). Поэтому паттерном левитационной силы (ЛС) поезда является взаимодействие тока элемента СПК с полем токов ДПК. Такое взаимодействие может быть описано выражением закона Ампера [5]. Полная же ЛС МЛП определима как векторная сумма упомянутых паттернов. Электродинамика ЛУ описуема уравнениями второго закона Кирхгофа [5].

Движение СПК относительно ДПК вызывает переменность их взаимных индуктивностей. При этом не стационарны коэффициенты уравнений ММЛС, ухудшается её качество. Избежать этого недостатка возможно, выбрав системы отсчёта так, чтобы обеспечить условную взаимную неподвижность контуров ЛУ. В таком качестве, удобнее всего принять [3] отсчётные системы, каждая из которых жёстко связана с одним из СПК. Инерциальными такие системы, в общем случае, не являются. Однако, желательно, чтобы искомая модель была тензорной, и, поэтому, её форма – инвариантной в отношении координат, в которых модель построена. Это достижимо, если в модели электродинамики ЛУ локальные производные заменить абсолютными. Получаемые уравнения имеют постоянные коэффициенты, тензорную форму и удобно описывают токовую динамику. После их (как правило – численного) разрешения относительно переменных, с использованием обратных координатных преобразований, определяются реальные токи контуров ЛУ.

Магнитная цепь ЛУ предполагается ненасыщенной [1]. Она может считаться условно-линейной подсистемой. К ней применим принцип аддитивности. Поэтому результирующее поле токов группы ДПК, взаимодействующих с одним из СПК, определимо как сумма полей, создаваемых отдельными модулями этих ДПК. Выражения для компонентов индукции таких полей получены в [6]. Подстановкой в эти выражения значений токов ДПК, в конечном итоге, находятся значения индукции поля каждой из упомянутых групп контуров.

About the authors

Vladislav A. Polyakov

Institute of Transport Systems and Technologies of Ukraine’s National Academy of Sciences

Author for correspondence.
Email: p_v_a_725@mail.ru

Ukraine

Nikolay M. Hachapuridze

Institute of Transport Systems and Technologies of Ukraine’s National Academy of Sciences

Email: itst@westa-inter.com

Ukraine

References

  1. Высокоскоростной магнитный транспорт с электродинамической левитацией / В. А. Дзензерский, В. И. Омельяненко, С. В. Васильев, В. И. Матин, С. А. Сергеев - К.: Наукова думка, 2001. - 479 с
  2. Takahashi T. Suspension characteristics of magnetically suspended high-speed trains / Takahashi, K. Okuyama 11 Hitachi Review- 1972. - 21, № 8. - pp. 59-66.
  3. Электрические машины (специальный курс) / Г. А. Сипайлов, Е. В. Кононенко, К. А. Хорьков-M.: Высш. шк., 1987. - 287 с.
  4. Копылов И. П. Математическое моделирование электрических машин / И. П. Копылов - М.: Высш. шк., 2001. - 327 с.
  5. Бессонов Л. А. Теоретические основы электротехники: Электрические цепи / Л. А. Бессонов - М.: Высш. шк., 1996. - 578 с.
  6. Бирюков В. А. Магнитное поле прямоугольной катушки с током / В. А. Бирюков, В. А. Данилов // Журнал технической физики. - 1961. - Т. XXXI, № 4. - С. 428 - 435.

Statistics

Views

Abstract - 205

PDF (Russian) - 137

Cited-By


PlumX

Dimensions


Copyright (c) 2017 Polyakov V.A., Hachapuridze N.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies