Thermophysical and gas dynamics problems of anti-meteorite protection for modern spacecrafts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of numerical calculations of the destruction of the protective shields of the spacecraft under the action of a micrometeorite impact are presented. A gas-dynamic numerical simulation of the process of high-speed penetration by micrometeorite of a spaced protective shield of a spacecraft has been carried out, taking into account fragmentation and the formation of a cloud of fragments after passing through the protective shield. In a three-dimensional formulation, the calculated configurations of the cloud of fragments of the impactor and the target for the initial velocities of the impactor up to 10 km/s are obtained. The high efficiency of the used design of a protective screen made of multidirectional corrugated grids as a means of fragmentation and dispersion of the kinetic energy of impact of small high-speed particles, reducing the average pressure pulse on the protected device by two to three orders of magnitude, is shown.

Full Text

Restricted Access

About the authors

V. V. Kim

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kim@ficp.ac.ru
Russian Federation, Chernogolovka, Moscow Region

S. I. Martynenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kim@ficp.ac.ru
Russian Federation, Chernogolovka, Moscow Region

A. V. Ostrik

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kim@ficp.ac.ru
Russian Federation, Chernogolovka, Moscow Region

I. V. Lomonosov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kim@ficp.ac.ru

Corresponding Member of the RAS

Russian Federation, Chernogolovka, Moscow Region

References

  1. Щербаков И.А. Некоторые приоритетные результаты, полученные в области физики в 2019 году (из отчетного доклада академика-секретаря ОФН РАН) // Доклады РАН. Физика, технические науки. 2020. Т. 492. № 1. С. 4–53.
  2. Смирнов И.В., Петров Ю.В. О временных характеристиках разрушения при высокоскоростных испытаниях // Доклады РАН. Физика, технические науки. 2020. Т. 493. № 1. С. 62–65.
  3. Агурейкин В.А., Анисимов С.И., Бушман А.В., Канель Г.И., Карягин В.П., Константинов А.Б., Крюков Б.П., Минин В.Ф., Разоренов С.В., Сагдеев Р.З., Сугак С.Г., Фортов В.Е. Теплофизические и газодинамические проблемы противометеоритной защиты космического аппарата “ВЕГА” // ТВТ. 1984. Т. 22. № 5. С. 964–982.
  4. Whipple F.L. Meteorites and space travel //Astronomical Journal. 1947. No. 1161. P. 131.
  5. Герасимов А.В., , Экран для защиты космического аппарата от высокоскоростного ударного воздействия частиц космической среды // Патент РФ RU 2623782 C1. 2016.
  6. Добрица Д.Б., Пашков С.В., Моделирование процесса взаимодействии высокоскоростного ударника с трехслойной разнесенной комбинированной преградой // Космические исследования. 2020. Т. 58. № 2. С. 131–137.
  7. Fortov V.E., Kim V.V., Lomonosov I.V., Matveichev A.V. Ostrik A.V. Numerical modeling of hypervelocity impacts // Int. J. Impact Eng. 2006. V. 33(1–12). P. 244.
  8. Mintsev V., et.al. Non-Ideal Plasma and Early Experiments at FAIR: HIHEX – Heavy Ion Heating and Expansion // Contrib. Plasma Phys. 2016. V. 56(3-4). P. 281–285. https://doi.org/10.1002/ ctpp.201500105
  9. Lomonosov I.V. Multi-phase equation of state for aluminum // Laser and Particle Beams. 2007. V. 25. P. 567–584.
  10. Ломоносов И.В. Уравнения состояния сапфира, кремнезема, периклаза и рутила // ТВТ. 2023. Т. 61. № 3. С.473–476. https://doi.org/10.31857/S004036442303016X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Configuration of bodies for v0 = 10 km/s at time points t = 0 (a), 10 (b), 20 (c) and 30 (d) mks.

Download (1MB)
3. Fig. 2. Two fractions of the density of the fragment cloud: in the range of density values p = 0.01–2 g/cm3 (a) and p = 2-3 g/cm3 (b).

Download (958KB)
4. Fig. 3. Dynamics of transmission of the perpendicular component of the pulse from the striker to the screen elements for V = 7 km/s.

Download (122KB)
5. Fig. 4. The back sides of the detector plates for V = 7 km/s (a) and 10 km/s (b).

Download (739KB)

Copyright (c) 2024 Russian Academy of Sciences