Многообразие разномасштабных атомных группировок в композите Cu–NbTi под действием пакетной гидроэкструзии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом рентгеноструктурного анализа исследованы закономерности изменения атомной структуры в композиционных материалах Cu–NbTi при P = 50 атм, скорости вращения подвижного Пуассона 0.5 об/мин и числе оборотов вращения n = (0–5)об. в результате действия пакетной гидроэкструзии на образцы. Обнаружено, что в образцах присутствуют разноразмерные структурные образования с дальним, мезоскопическим и ближним атомным порядком. Показано, что немонотонность изменения атомного порядка, с увеличением числа оборотов вращения подвижного Пуассона, обусловлена структурным фазовым переходом порядок—беспорядок в состояние с образованием разноразмерных атомных группировок с дальним, мезоскопическим и ближним атомным порядком, при котором выявлено проявление новых сил межатомного взаимодействия, характеризующих образование интерметаллидных кластеров группировок атомов. Обнаружено, что уже в исходном состоянии после компактирования образцов наблюдается присутствие кластеров в медной матричной фазе, содержащих ниобий и титан, что характеризует усиление гетерофазности в исследуемой системе образцов. В результате получается однородный мелкодисперсный материал, содержащий равномерно распределенные разномасштабные фракции металлических и интерметаллидных фаз в виде кристаллических, мезоскопических и аморфных фракций. Такая структура проявляет повышенную прочность, что заметно в виде увеличения микротвердости от 1.56 ГПа до 4.15 ГПa.

Полный текст

Доступ закрыт

Об авторах

З. А. Самойленко

Донецкий физико-технический институт имени А.А. Галкина

Автор, ответственный за переписку.
Email: yulduz19.77@mail.ru
Россия, Донецк

Н. Н. Ивахненко

Донецкий физико-технический институт имени А.А. Галкина; Российский государственный аграрный университет — МСХА имени К.А. Тимирязева

Email: yulduz19.77@mail.ru
Россия, Донецк; Москва

Е. И. Пушенко

Донецкий физико-технический институт имени А.А. Галкина

Email: yulduz19.77@mail.ru
Россия, Донецк

М. Ю. Бадекин

Российский государственный аграрный университет — МСХА имени К.А. Тимирязева; Донецкий государственный университет

Email: korund2002@list.ru
Россия, Москва; Донецк

Н. В. Чернявская

Донецкий физико-технический институт имени А.А. Галкина

Email: korund2002@list.ru
Россия, Донец

Список литературы

  1. Cvijoviс-Alagiс I., Laketiс S., Momciloviс M., Ciganoviс J., Bajat J., Kojiс V. // Acta Metall. 2024. https://doi/org/10.1007/s40195-024-01705-0
  2. Panigrahi A., Sulkowski B., Waitz Th., Ozaltin K., Chrominski W., Pukenas A., Horky J., Lewandowska M., Skrotzki W., Zehetbauer M. // Journal of the Mechanical Behavior of Biomedical Materials. 2016. V. 62. P. 93-105. https://doi/org/10.1016/j.jmbbm.2016.04.042
  3. Campos-Quiros A., Cubero-Sesin J.M., Edalati K. // Materials Science and Engineering: A. 2020. V. 795. P. 139972. https://doi/org/10.1016/j.msea.2020.139972
  4. Pillmeier S., Pippan R., Eckert J., Hohenwarter A. // Materials Science and Engineering: A. 2023. V. 871. P. 144868. https://doi/org/10.1016/j.msea.2023.144868
  5. Korneva A., Straumal B., Kilmametov A., Kopacz S., Szczerba M., Gondek Ł., Cios G., Lityńska-Dobrzyńska L., Chulist R. // Materials Science and Engineering: A. 2022. V. 857. P. 144096. https://doi/org/10.1016/j.msea.2022.144096
  6. Volker B., Maier-Kiener V., Werbach K., Müller T., Pilz S., Calin M., Eckert J., Hohenwarter A. // Materials & Design. 2019. V. 179. P. 107864. https://doi/org/10.1016/j.matdes.2019.107864
  7. Ghosh S., Singh A.K., Mula S. // Materials & Design. 2016. V. 179. P. 47-57. https://doi/org/10.1016/j.matdes.2016.03.107
  8. Delshadmanesh M., Khatibi G., Zare Ghomsheh M., Lederer M., Zehetbauer M., Danninger H. // Materials Science and Engineering: A. 2017. V. 706. P. 83-94. https://doi/org/10.1016/j.msea.2017.08.098
  9. Hu N., Xie L., Liao Q., Gao A., Zheng Y., Pan H., Tong L., Yang D., Gao N., Starink M.J., Chu P.K., Wang H. // Acta Biomaterialia. 2021. V. 126. P. 524-536. https://doi/org/10.1016/j.actbio.2021.02.045
  10. Cvijovic-Alagic I., Laketic S., Bajat J., Hohenwarter A., Rakin M. // Surface and Coatings Technology. 2021. V. 423. P. 127609. https://doi/org/10.1016/j.surfcoat.2021.127609
  11. Korneva A., Straumal B., Gornakova A., Kilmametov A., Gondek Ł., Lityńska-Dobrzyńska L., Chulist R., Pomorska M., Zięba P. // Materials. 2022. V. 12. № 15. P. 4136. https://doi/org/10.3390/ma15124136
  12. Edalati K., Daio T., Lee S., Horita Z., Nishizaki T., Akune T., Nojima T., Sasaki T. // Acta Materialia. 2014. V. 80. P. 149. https://doi/org/10.1016/j.actamat.2014.07.065
  13. Zhang Sh., Liu Sh., Wan J., Liu W. // Materials Science and Engineering: A. 2020. V. 772. P. 138788. https://doi/org/10.1016/j.msea.2019.138788
  14. Hu J., Du L.-X., Wang J.-J. // Materials Science and Engineering: A. 2012. V. 554. P. 79. https://doi/org/10.1016/j.msea.2012.06.018
  15. Chen Ch.Y., Chen Ch.C. Yang J.R. // Materials Characterization. 2014. V. 88. P.69. https://doi/org/10.1016/j.matchar.2013.11.016.
  16. Samoilenko Z.A., Ivakhnenko N.N., Pushenko E.I., Belousov N.N., Chernyavskaya N.V., Badekin M Yu. // Inorganic Materials. 2023. V. 59. № 9. P. 932–939. https://doi/org/10.1134/s0020168523090121
  17. Жданов Г.С., Илюшин А.С., Никитина С.В. Дифракционный и резонансный структурный анализ М. Наука, 1980. 256 с.
  18. Самойленко З.А., Ивахненко Н.Н., Пащенко В.П., Копаев О.В., Остафийчук Б.К., Гасюк И.М. // Журнал технической физики. 2002. Т. 72. № 3. С. 83.
  19. Глезер А.М., Варюхин В.Н., Томчук А.А., Малеева Н.А. // Доклады Академии Наук. Техническая физика. 2014. Т. 457. № 5. С. 535. https://doi/org/10.7868/S0869565214230108
  20. Edalati K., Horita Z. // Materials Science and Engineering A. 2016. V. 652. P. 325. https://doi/org/https:doi.org/10.1016/j.msea.2015.11.074
  21. Белоусов Н.А. // Физика и техника высоких давлений. 2006. Т. 16. № 4. С. 90.
  22. Самойленко З.А. Кластерообразование в структурах с нарушенным дальним порядком: Автореф. дис. на соискание ученой степени доктора физ.-мат. наук: 01.04.07. Донецк: ДонФТИ, 1998.
  23. Архаров В.И., Мархасин Е.С., Самойленко З.А. // Физика металлов и металловедение. 1970. Т. 70. № 5. С. 1102.
  24. Кривоглаз М.А. // Электронная структура и электронные свойства металлов и сплавов. Киев: Наукова думка, 1988. 237 с.
  25. Матросов Н.И., Дугадко А.Б., Павловская Е.А., Сенникова Л.Ф., Шевченко Б.А.// Физика и техника высоких давлений. 1999. Т. 9. № 4. С. 63.
  26. Glezer А.М., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. // Journal of Alloys and Compounds. 2018. V. 744. P. 791. https://doi/org/10.1016/j.jallcom.2018.02.124

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Геометрия торцевой поверхности нановолокнистого Cu–NbTi композита.

Скачать (134KB)
3. Рис. 2. Дифракционные картины композита Cu–NbTi при P = 50 атм, скорости вращения подвижного Пуассона 0.5 об/мин и числе оборотов вращения n = (0–5) об.: (а) — n = 0 об., (б) — n = 0.5 об., (в) — n = 2 об., (г) — n = 5 об.

Скачать (422KB)
4. Рис. 3. Зависимость концентрации кристаллических (Сcr) и мезоскопических (Сmez) кластеров от числа оборотов вращения подвижного Пуассона.

Скачать (56KB)
5. Рис. 4. Изменение микротвердости композита Cu–NbTi от числа оборотов вращения подвижного Пуассона.

Скачать (42KB)
6. Рис. 5. Изменение интенсивностей когерентного (Icoh) и некогерентного (Iincoh) рассеяния от числа оборотов вращения подвижного Пуассона.

Скачать (56KB)

© Институт физики твердого тела РАН, Российская академия наук, 2025