Negative creep of single-crystals nickel-based superalloys
- 作者: Epishin A.I.1, Lisovenko D.S.1
-
隶属关系:
- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
- 期: 编号 3 (2024)
- 页面: 199–216
- 栏目: Articles
- URL: https://transsyst.ru/1026-3519/article/view/673072
- DOI: https://doi.org/10.31857/S1026351924030131
- EDN: https://elibrary.ru/uguazo
- ID: 673072
如何引用文章
详细
The negative creep of single crystals of nickel-based superalloys SR99 and CMSX-4 has been investigated. This phenomenon was observed for both superalloys at temperatures of 980–1000 °C and low or zero loading stresses. It is assumed that the main reason for the negative creep is the formation of a short-range order of atoms in a strongly alloyed crystal lattice of the g-matrix. Additional factors affecting the magnitude and anisotropy of the negative creep strain may be the relaxation of residual stresses: at the microscopic level, misfit stresses between the g-matrix and strengthening g′-precipitates, and at the mesoscopic level, dendritic stresses between the dendrite axes and interdendritic regions.
作者简介
A. Epishin
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: a.epishin2021@gmail.com
俄罗斯联邦, Chernogolovka
D. Lisovenko
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
Email: a.epishin2021@gmail.com
俄罗斯联邦, Chernogolovka
参考
- Evans K., Nkansah M., Hutchinson I., Rogers S.C. Molecular network design // Nature. 1991. V. 353. P. 124. https://doi.org/10.1038/353124a0
- Lim T.-C. Auxetic materials and structures. Singapore: Springer, 2015. http://doi.org/10.1007/978-981-287-275-3
- Ren X., Das R., Tran P., et al. Auxetic metamaterials and structures: A review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
- Kelkar P.U., Kim H.S., Cho K.-H., et. al. Cellular auxetic structures for mechanical metamaterials: A review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
- Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V.55. № 4. P. 461–474. https://doi.org/10.3103/S0025654420040044
- Epishin A.I., Lisovenko D.S. Influence of the crystal structure and type of interatomic bond on the elastic properties of monatomic and diatomic cubic crystals // Mech. Solids. 2022. V.57. № 6. P. 1344–1358. https://doi.org/10.3103/S0025654422060206
- Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V.58. № 5. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
- Svetlov I.L., Epishin A.I., Krivko A.I., Samojlov A.I., Odintsev I.N., Andreev A.P. Anisotropy of Poisson ratio of nickel base alloy single crystals // Doklady Akademii Nauk SSSR. 1988. V. 302. № 6. P. 1372–1375.
- Baughman R.H., Stafström S., Cui C., Dantas S.O. Materials with negative compressibilities in one or more dimensions // Science. 1998. V. 279. P. 1522–1524. https://doi.org/10.1126/science.279.5356.1522
- Liu Z.-K., Wang Y., Shang S.-L. Origin of negative thermal expansion phenomenon in solids // Scripta Mater. 2011. V. 65. № 8. P. 664–667. https://doi.org/10.1016/j.scriptamat.2011.07.001
- Wittenberg L.J., DeWitt R. Volume contraction during melting; Emphasis on lanthanide and actinide metals // J. Chem. Phys. 1972. V. 56. P. 4526–4533. https://doi.org/10.1063/1.1677899
- Rittich M. The volume change during solidification. NASA Technical Memorandum TM-77817, 1982. https://ntrs.nasa.gov/api/citations/19850015932/downloads/19850015932.pdf
- Lakes R.S. Extreme damping in composite materials with a negative stiffness phase // Phys. Rev. Lett. 2001. V. 86. № 13. P. 2897–2900. https://doi.org/10.1103/PhysRevLett.86.2897
- Fountain R.W., Korchynsky M. The phenomenon of “negative creep” in alloys // Trans. ASM 51. 1959. P. 108–122. https://doi.org/10.1021/ie50595a915
- Timmins R., Greenwood G.W., Dyson D.F. Negative creep in a nickel-base superalloy // Scr. Metall. 1986. V.20. P. 67–70. https://doi.org/10.1016/0036-9748(86)90214-0
- Louchet F. A model of negative creep in nickel-based superalloys // Scripta Metall. Mater. 1995. V. 33. № 6. P. 913–918. https://doi.org/10.1016/0956-716X(95)00299-B
- Branch G., Draper J.H.M., Hodger J.B.M.N.W. In: International conference on creep and fatigue in Elevated Temperature Applications, Philadelphia. 1973. P. 192.1–192.9.
- Mayer K.H., Koenig H. In: VGB-Konferenz “Forschung in der Kraftwerkstechnik”. Essen, 1988. P. 1–24.
- Marucco A., Nath B. Effects of ordering on the properties of Ni-Cr alloys // J. Mater. Sci. 1988. V. 23. P. 2107–2114. https://doi.org/10.1007/BF01115776
- Reppich B. Negatives Kriechen // Z. Metallkd. 1984. V. 75. P. 193–202. https://doi.org/10.1515/ijmr-1984-750302
- Reppich B. Negatives Kriechen und Mikrogefüge langzeitexponierter Gasturbinenwerk stofle // Z. Metallkd. 1994. V. 85. P. 28–38. https://doi.org/10.1515/ijmr-1994-850105
- Kinzel S., Gabel J., Völkl R., Glatzel U. Reasons for volume contraction after long-term annealing of waspaloy // Adv. Eng. Mater. 2015. V. 17. P. 1106–1112. https://doi.org/10.1002/adem.201500159
- Firlus K., Völkl R., Gabel J., Glatzel U. The influence of Cr, Al, Co, Fe and C on negative creep of Waspaloy // Inter. J. Mater. Research. 2021. V. 112. № 2. P. 90–97. https://doi.org/10.1515/ijmr-2020-7980
- Ford D.A., Arthey R.P. Development of single crystal alloys for specific engine applications. Superalloys 1984, Warrendale, Pa.: Metallurgical Society of AIME. 1984. P. 115–124. https://www.tms.org/superalloys/10.7449/1984/Superalloys_1984_115_124.pdf
- Harris K., Erickson G.L., Sikkenga S.L., Brentall W.D., Aurrecoechea J.M., Kubarych K.G. Development of the rhenium-containing superalloys CMSX-4 & CM 186 LC for single-crystal blade and directionally solidified vane applications in advanced turbine engines // JMEP. 1993. V. 2. № 1. P. 481–487. https://doi.org/10.1007/BF02661730
- Lander J.J., Kern HE., Beach A.L. Solubility and diffusion coefficient of carbon in nickel: Reaction rates of nickel‐carbon alloys with barium oxide // J. Appl. Phys. 1952. V. 23. P. 1305–1309. https://doi.org/10.1063/1.1702064
- Link T., Epishin A., Brückner U., Portella P. Increase of misfit during creep of superalloys and its correlation with deformation // Acta Mater. 2000. V. 48. № 8. P. 1981–1994. https://doi.org/10.1016/S1359-6454(99)00456-5.
- Nash P. The Cr−Ni (Chromium-Nickel) system // Bulletin of Alloy Phase Diagrams. 1986. V. 7. P. 466–476. https://doi.org/10.1007/BF02867812
- Okamoto H. Ni-W (Nickel-Tungsten) // JPE. 1991. V. 12. № 6. P. 706. https://doi.org/10.1007/BF02645185
- Cury R., Joubert J.-M., Tusseau-Nenez S., Leroy E., Allavena-Valette A. On the existence and the crystal structure of Ni4W, NiW and NiW2 compounds // Intermetallics. 2009. V. 17. № 3. P. 174–178. https://doi.org/10.1016/j.intermet.2008.11.001
- Schmidt R., Feller-Kniepmeier M. Effect of heat treatments on phase chemistry of the nickel-base superalloy SRR 99 // Metall. Trans. A. 1992. V. 23. P. 745–757. https://doi.org/10.1007/BF02675552
- Hemmersmeier U., Feller-Kniepmeier M. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4 // Mater. Sci. Eng. A. 1998. V. 248. № 1–2. P. 87–97. https://doi.org/10.1016/S0921-5093(98)00516-4
- Link T., Epishin A., Fedelich B. Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocation loops // Phil. Mag. 2009. V. 89. № 13. P. 1141–1159. https://doi.org/10.1080/14786430902877810
- Brückner U., Epishin A., Link T. Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys // Acta Mater. 1997. V. 45. № 12. P. 5223–5231. https://doi.org/10.1016/S1359-6454(97)00163-8
- Epishin A., Link T., Brückner U., Fedelich B. Residual stresses in the dendritic structure of single crystal nickel-based superalloys // Phys. Met. Metallogr. 2005. V. 100. № 2. P. 192–199.
- Epishin A., Fedelich B., Finn M. et. al. Investigation of elastic properties of the single-crystal nickel-base superalloy CMSX-4 in the temperature interval between room temperature and 1300C // Crystals. 2021. V. 11. № 2. P. 152. https://doi.org/10.3390/cryst11020152
- Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301.
- Epishin A., Link T., Nazmy M., Staubli M., Klingelhöffer H., Nolze G. Microstructural degradation of CMSX-4: kinetics and effect on mechanical properties, Proceedings of 11th International Symposium “Superalloys 2008”, ed. by R. C. Reed et al., TMS, Warrendale, Pennsylvania, USA, 2008. P. 725–731. https://doi.org/10.7449/2008/Superalloys_2008_725_731
补充文件
