Modulation of antioxidant enzyme activity levels and chaperone levels in different Cucurbitaceae genotypes under heat stress
- Авторлар: Yurina N.P.1, Murtazina N.D.1
-
Мекемелер:
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Шығарылым: Том 61, № 2 (2025)
- Беттер: 162-171
- Бөлім: Articles
- URL: https://transsyst.ru/0555-1099/article/view/687461
- DOI: https://doi.org/10.31857/S0555109925020069
- EDN: https://elibrary.ru/EOIQNN
- ID: 687461
Дәйексөз келтіру
Аннотация
Factors determining plant resistance to abiotic stress include many stress defense systems. The most significant of them are the antioxidant and chaperone systems. However, the mechanisms of interaction between these systems have not been sufficiently studied. In this work, we studied the effect of heat stress on the activity levels of antioxidant enzymes (superoxide dismutase; SOD and catalase; CAT) and the levels of heat shock proteins (cytoplasmic HSP70 and chloroplast HSP70B) in the leaves of pumpkin seedlings of three genotypes (Cucurbita moschata, C. pepo, C. maxima) differing in their resistance to environmental stress. It was shown that under heat stress, the levels of CAT activity increased in all the studied genotypes. After heat stress, a noticeable drop (48.9%) in the level of CuZn-SOD activity was shown in C. moschata, compared with an increase in the enzyme activity by (2–14.6%) in the other two genotypes. The level of cytoplasmic HSP70 proteins decreased by 36, and chloroplast HSP70B by 34% in C. moschata plant cells after heat stress. In contrast, the level of cytoplasmic heat shock proteins HSP70 increased in C. pepo and C. maxima genotypes by 20 and 18%, respectively, and in the case of chloroplast HSP70B proteins, the increase was 43 and 10%. It was found that the modulation of the activity levels of CuZn-SOD (the main representative of the enzyme in the cell) and the levels of cytoplasmic HSP70 and chloroplast HSP70B chaperones in Cucurbitaceae genotypes is coordinated, indicating the interaction of these two cellular defense systems under heat stress. Thus, HSP70, HSP70B levels and CuZn-SOD activity levels are reliable early warning signals of heat stress, allowing the stress to be detected before it causes serious damage to the plant.
Негізгі сөздер
Толық мәтін

Авторлар туралы
N. Yurina
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: nyurina@inbi.ras.ru
Bakh Institute of Biochemistry
Ресей, Moscow, 119071N. Murtazina
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: nyurina@inbi.ras.ru
Bakh Institute of Biochemistry
Ресей, Moscow, 119071Әдебиет тізімі
- Mishra N., Jiang C., Chen L., Paul A., Chatterjee A., Shen G. // Front. Plant Sci. 2023. V. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622
- Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. // Plant, Cell & Enviro. 2010. V. 33. P. 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
- Zandalinas S.I., Balfagón D., Arbona V., Gómez-Cadenas A. // Front. Plant Sci. 2017. V. 8. 953. https://doi.org/10.3389/fpls.2017.00953
- Katano K., Honda K., Suzuki N. // Int. J. Mol. Sci. 2018. V. 19. 3370. https://doi.org/10.3390/ijms19113370
- Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. // Physiol. Plant. 2008. V. 132. P. 452–466. https://doi.org/10.1111/j.1399-3054.2007.01029.x
- Wang C., Wen D., Sun A., Han X., Zhang J., Wang Z., Yin Y. // J. Cereal Sci. 2014. V. 60. P. 635-659. http://dx.doi.org/10.1016/j.jcs.2014.05.004
- Rahman M.A., Woo J.H., Song Y., Lee S.H., Hasan M.M., Azad M.A.K., Lee K.W. // Life. 2022. V. 12. 1426. https://doi.org/10.3390/life12091426
- Mishra P., Bhoomika K., Dubey R.S. // Protoplasma. 2013. V. 250. P. 3–19. https://doi.org/10.1007/s00709-011-0365-3
- Liu Z., Qiao D., Liu Z., Wang Z., Sun L., Li X. // Peer J. 2023. V. 11. e15177. http://doi.org/10.7717/peerj.15177
- Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. // Plant Growth Regul. 2010. V. 60. P. 225–235. https://doi.org/10.1007/s10725-009-9436-2
- Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949–964. https://doi.org/10.31857/S00 М26898423060228
- Masand S., Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P.53–64. https://doi.org/10.1007/s11033-015-3938-y
- Cho E.K., Hong C.B. // Plant Сell Reports. 2006. V. 25. P. 349–358. https://doi.org/10.1007/s00299-005-0093-2
- Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063–5078. https://doi.org/10.3390/ijms15035063
- Augustine S.M., Cherian A.V., Syamaladevi D.P., Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368–2380. https://doi.org/10.1093/pcp/pcv142
- Pulido P., Llamas E., Rodriguez-Concepcion M. // Plant Signaling & Behavior. 2017. V. 12. e1290039. https://doi.org/10.1080/15592324.2017.1290039
- Devarajan A.K., Muthukrishanan G., Truu J., Truu M., Ostonen I., Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
- Mokhtar M., Bouamar S., Di Lorenzo A., Temporini C., Daglia M., Riazi A. // Molecules. 2021. V. 26. 3623. https://doi.org/10.3390/molecules26123623
- Vinayashree S., Vasu P. // Food Chem. 2021. V. 340. 128177. https://doi.org/10.1016/j.foodchem.2020.128177
- Круг Г. Овощеводство.Пер. с немецкого. М.: Колос, 2000. 572 с.
- Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
- Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. // Gene. 2013. V. 516. P. 184–189. https://doi.org/10.1016/j.gene.2012.11.052
- Gill S.S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Simova-Stoilova L., Vaseva I., Grigorova B., Demirevska. K., Feller U. // Plant Physiol. Biochem. 2010. V. 48. P. 200–206. https://doi.org/10.1016/j.plaphy.2009.11.003
- Sharma P., Dubey R.S. // J. Plant Physiol. 2005. V. 162. P. 854–864. https://doi.org/10.1016/j.jplph.2004.09.011
- Chen S., Liu A., Zhang S., Li C., Chang R., Liu D. // Plant Physiol. Biochem. 2013. V. 73. P. 245–253. https://doi.org/10.1016/j.plaphy.2013.10.002
- Driedonks N., Xu J., Peters J.L., Park S., Rieu I. // Front. Plant Sci. 2015. V. 6. 999. https://doi.org/10.1134/S0006297915100053 10.3389/fpls.2015.00999
- Fortunato S., Lasorella C., Dipierro N., Vita F., de Pinto M.C. // Antioxidants. 2023. V. 12. 605. https://doi.org/10.3390/antiox12030605
- Andrási N., Pettkó-Szandtner A., Szabados L. // J. Exp. Botany. 2021. V. 72. P. 1558–1575. https://doi.org/10.1093/jxb/eraa576
- Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
- Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M. // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
- Kim T., Samraj S., Jiménez J., Gómez C., Liu T., Begcy K. // BMC Plant Biology. 2021. V. 21. P. 1–20. https://doi.org/10.1186/s12870-021-02959-x
- Liu J., Xu L., Shang J., Hu X., Yu H., Wu H., Lv W., Zhao Y. // Genet. Mol. Biol. 2021. V. 44. e20210035. https://doi.org/10.1590/1678-4685-GMB-2021-0035
- Davoudi M., Chen J., Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://doi.org/10.3390/ijms23031918
- Aina O., Bakare O., Fadaka A.O., Keyster M., Klein A. // Planta. 2024. V. 259. 60. http://doi.org/10.1007/s00425-024-04333-1
- Dumanović J., Nepovimova E., Natić M., Kuča K., & Jaćević V. // Front. Рlant Sci. 2021. V. 11. 552969. https://doi.org/10.3389/fpls.2020.552969
Қосымша файлдар
