Experimental study of galactic cosmic ray fluxes in the solar modulation energy region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Proposals for a new approach to the development of scientific equipment for the study of galactic and solar cosmic ray fluxes in the solar modulation energy range (30–1000 MeV/nucleon) with elementary charge and mass resolution are considered. It is proposed to place the equipment on the Russian space station ROS (project "Modulation") and on the international scientific lunar station MNLS (project "Moon–Modulation"), if it is created. The projects assume the creation of a database of galactic and solar cosmic rays (SCR) for the entire solar activity cycle. Such a database is necessary to improve numerical models of the fluxes of energetic heliospheric particles in interplanetary and near-Earth space.

Sobre autores

D. Podorozhny

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: dmpo@bk.ru
Moscow, Russia

A. Gorbunov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

V. Kalegaev

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

D. Karmanov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

I. Kovalev

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

A. Kurganov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

A. Panov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

M. Podzolko

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

A. Turundavsky

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia

Bibliografia

  1. Potgieter M.S. // Living Rev. Sol. Phys. 2013. V.10. P. 3.
  2. Rankin J.S., Bindi V., Bykov A.M. et al. // Space Sci. Rev. 2022. V. 218. P. 42.
  3. Kalegaev V.V., Karmanov D.E., Kurganov A.A. et al. // In: Spring. Proc. Earth Environ. Sci. Springer Nature, 2023. P. 71.
  4. Richardson H., Cane T., Rosenvinge V., and Meguire R. // Proc. 30th ICRC–2007. 2008. V. 1. P. 323.
  5. George J.S., Lave K.A., Wiedenbeek M.E. et al. // Astrophys. J. 2009. V. 698. No. 2. P. 1666.
  6. Ktihl P., Gomez-Herrero R., and Heber B. // Solar Phys. 2016. V. 29. P. 965.
  7. McKibben R.B., Connell J.J., Lopate C. et al. // Proc. 27th ICRC 2001. V. 1. P. 3893.
  8. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. // Astrophys. J. 2013. V. 765. No. 2. P. 91.
  9. Shikaze Y., Haino S., Abe K. et al. // Astropart. Phys. 2007. V. 28. No. 1. P. 154.
  10. Abe K., Fuke H., Haino S. et al. // Astrophys. J. 2016. V. 822. P. 65.
  11. Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Reports. 2021. V. 894. P. 1.
  12. Bulatov V., Fillippov S., Karmanov D. et al. // Adv. Space Res. 2019. V. 64. No. 12. P. 2610.
  13. Vasiliev O., Karmanov D., Kovalev I. et al. // Phys. Part. Nucl. Lett. 2021. V. 18. P. 36.
  14. Anglin J.D., Dietrich W.F., Smpson J.A. // Astrophys. J. 1973. V. 186. P. 41.
  15. Reames D.V. // Front. Astron. Space Sci. 2024. V. 11. P. 1.
  16. Богомолов Э.А., Васильев Г.И., Мен В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 466
  17. Аткин Е., Булатов В., Дорохов В. и др. // Письма в ЖЭТФ. 2018. Т. 108. № 1. С. 5
  18. ГОСТ 134–1044 2007 Аппаратура, приборы, устройства и оборудование космических аппаратов. Методы расчета радиационных условий на борту космических аппаратов и установления требований по стойкости радиоэлектронной аппаратуры космических аппаратов к воздействию заряженных частиц космического пространства естественного происхождения.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025