NONLINEAR DYNAMICS OF LINEARLY UNSTABLE n = 0 ELECTROSTATIC PERTURBATIONS IN CONVENTIONAL TOKAMAK PLASMAS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The nonlinear dynamics of axisymmetric radially localized oscillations of the electric potential in a tokamak with stationary toroidal plasma rotation is investigated. In the linear approximation, these oscillations split into two independent branches: geodesic acoustic modes (GAMs) and low-frequency zonal flows (ZFs). The stability of the latter is determined by the specifics of plasma equilibrium, and the frequency/growth rate – by the velocity of stationary rotation. It is shown that the nonlinear dynamics of the electric potential and the associated fluctuations of pressure, density, and longitudinal plasma velocity within the MHD model has integrals of motion. The evolution of the electric potential and hydrodynamic plasma characteristics is calculated for different velocities of stationary plasma rotation and for different initial values of the electric field perturbations. The regime, which initial stage corresponds to linearly unstable ZF, is studied in detail. It is shown that at the nonlinear stage, the fluctuations of electric potential reach amplitude-limited oscillations of both low frequency and GAM. The resulting oscillation spectrum exhibits GAM frequency splitting and intermittency.

作者简介

E. Sorokina

National Research Centre "Kurchatov Institute"

Email: Sorokina_EA@nrcki.ru
Moscow, Russia

参考

  1. Conway G.D., Smolyakov A.I., Ido T. // Nucl. Fusion. 2022. V. 62. P. 013001. https://doi.org/10.1088/1741-4326/ac0dd1
  2. Diamond P.H., Itoh S.-I., Itoh K., Hahm T.S. // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35. https://doi.org/10.1088/0741-3335/47/5/R01
  3. Winsor N., Johnson J.L., Dawson J.M. // Phys. Fluids. 1968. V. 11. P. 2448. https://doi.org/10.1063/1.1691835
  4. Wang S. // Phys. Rev. Lett. 2006. V. 97. P. 085002. https://doi.org/10.1103/PhysRevLett.97.085002; Wang S. // Phys. Rev. Lett. 2006. V. 97. P. 129902 (erratum). https://doi.org/10.1103/PhysRevLett.97.129902
  5. Wahlberg C. // Phys. Rev. Lett. 2008. V. 101. P. 115003. https://doi.org/10.1103/PhysRevLett.101.115003
  6. Lakhin V.P., Ilgisonis V.I., Smolyakov A.I. // Phys. Lett. A. 2010. V. 374. P. 4872. https://doi.org/10.1016/j.physleta.2010.10.012
  7. Hamerli E. // Phys. Fluids. 1983. V. 26. P. 230. https://doi.org/10.1063/1.864012
  8. Tasso H., Throumoulopoulos G.N. // Phys. Plasmas. 1998. V. 5. P. 2378. https://doi.org/10.1063/1.872912
  9. Ильгисонис В.И., Поздняков Ю.Н. // Физика плазмы. 2002. Т. 28. С. 99. https://doi.org/10.1134/1.1450672
  10. Haverkort J.W., de Blank H.J., Koren B. // J. Comput. Phys. 2012. V. 231. P. 981. https://doi.org/10.1016/j.jcp.2011.03.016
  11. Melnikov A.V., Vershkov V.A., Eliseev L.G., Grashin S.A., Gudozhnik A.V., Krupnik L.I., Lysenko S.E., Mavrin V.A., Perfilov S.V., Shelukhin D.A., Soldatov S.V., Ufimtsev M.V., Urzabaev A.O., Oost G.V., Zimeleva L.G. // Plasma Phys. Control. Fusion. 2005. V. 48. P. S87. https://doi.org/10.1088/0741-3335/48/4/S07
  12. Мельников А.В., Вершков В.А., Грашин С.А., Драбинский М.А., Елисеев Л.Г., Земцов И.А., Крутин В.А., Лахин В.П., Лысенко С.Е., Немец А.Р., Нуреалев М.Р., Харчев Н.К., Кабанов Ф.О., Шевчугин Д.А. // Письма ЖЭТФ. 2022. Т. 115. С. 360. https://doi.org/10.31857/S1234567822060040
  13. Сорокина Е.А. // Письма ЖЭТФ. 2024. Т. 120. С. 667. https://doi.org/10.31857/S0370274224110039
  14. Галеев А.А., Сагдеев Р.З. // Основы физики плазмы. Т. 1 / Под ред. А.А. Галеева и Р. Судана. М.: Энергоатомиздат, 1983. С. 590.
  15. Ramisch M., Stroth U., Niedner S., Scott B. // New J. Phys. 2003. V. 5. P. 12. https://doi.org/10.1088/1367-2630/5/1/312
  16. Sasaki M., Itoh K., Nagashima Y., Ejiri A., Takase Y. // Phys. Plasmas. 2009. V. 16. P. 022306. https://doi.org/10.1063/1.3076933
  17. Qiu Z., Chen L., Zonca F., Chen W. // Nucl. Fusion. 2019. V. 16. P. 066031. https://doi.org/10.1088/1741-4326/ab1285
  18. Ren H., Xu X.Q. // Phys. Plasmas. 2020. V. 27. P. 034501. https://doi.org/10.1063/1.5126872
  19. Palermo F., Conway G.D., Poli E., Roach C.M. // Nucl. Fusion. 2023. V. 63. P. 066010. https://doi.org/10.1088/1741-4326/acc816
  20. Conway G.D., Scott B., Schirmer J., Reich M., Kendl A. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2005. V. 47. P. 1165. https://doi.org/10.1088/0741-3335/47/8/003
  21. Conway G.D., Tröster C., Scott B., Hallatschek K. and the ASDEX Upgrade Team // Plasma Phys. Control. Fusion. 2008. V. 50. P. 055009. https://doi.org/10.1088/0741-3335/50/5/055009
  22. Cheng J., Yan L.W., Zhao K.J., Dong J.Q., Hong W.Y., Qian J., Yang Q.W., Ding X.T., Duan X.R., Liu Y. // Nucl. Fusion. 2009. V. 49. P. 085030. https://doi.org/10.1088/0029-5515/49/8/085030
  23. Hillesheim J.C., Peebles W.A., Carter T.A., Schmitz L., Rhodes T.L. // Phys. Plasmas. 2012. V. 19. P. 022301. https://doi.org/10.1063/1.3678210
  24. Yashin Y.M., Bulanin V.V., Gusev V.K., Khromov N.A., Kurskiev G.S., Minaev V.B., Patrov M.I., Petrov A.V., Petrov Yu.V., Prisyazhnyuk D.V., Sakharov N.V., Shchegolev P.B., Tolstyakov S.Y., Yafodomcev V.I., Wagner F. // Nucl. Fusion. 2014. V. 54. P. 114015. https://doi.org/10.1088/0029-5515/54/11/114015
  25. Melnikov A.V., Eliseev L.G., Perfilov S.V., Lysenko S.E., Shurygin R.V., Zenin V.N., Grashin S.A., Krupnik L.I., Kozachek A.S., Solomatin R.Yu., Eifirov A.G., Smolyakov A.I., Ufimtsev M.V. and The HIBP Team // Nucl. Fusion. 2015. V. 55. P. 063001. https://doi.org/10.1088/0029-5515/55/6/063001
  26. Hassam A.B., Antonsen T.M., Drake J.F., Liu C.S. // Phys. Rev. Lett. 1991. V. 66. P. 309. https://doi.org/10.1103/PhysRevLett.66.309
  27. Лахин В.П., Сорокина Е.А., Ильгисонис В.Н., Коновальцева Л.В. // Физика плазмы. 2015. Т. 41. С. 1054. https://doi.org/10.1134/S1063780X15120077
  28. Ilgisonis V.I., Lakhin V.P., Marusov N.A., Smolyakov A.I., Sorokina E.A. // Nucl. Fusion. 2022. V. 62. P. 066002. https://doi.org/10.1088/1741-4326/ac3f4c
  29. Кадомцев Б.Б. // Коллективные явления в плазме. М.: Наука, 1988.
  30. Fu G.Y. // J. Plasma Phys. 2011. V. 77. P. 457. https://doi.org/10.1017/S0022377810000619
  31. Nagashima Y., Itoh K., Itoh S.-I., Fujisawa A., Yagi M., Hoshino K., Shinohara K., Ejiri A., Takase Y., Ido T., Uehara K., Miura Y. and the JFT-2M group // Plasma Phys. Control. Fusion. 2007. V. 49. P. 16111. https://doi.org/10.1088/0741-3335/49/10/002
  32. Lin D.J., Heidbrink W.W., Crocker N.A., Du X.D., Nazikian R., Van Zeeland M.A., Barada K. // Nucl. Fusion. 2022. V. 62. P. 112010. https://doi.org/10.1088/1741-4326/ac8be3
  33. Ильгисонис В.И., Коновальцева Л.В., Лахин В.П., Сорокина Е.А. // Физика плазмы. 2014. Т. 40. С. 955. https://doi.org/10.1134/S1063780X14110038

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025