PROBE MEASUREMENTS IN EXPERIMENTS WITH ADDITIONAL WORKING GAS PUFFING INTO FRONTAL REGION OF LOWER HYBRID ANTENNA OF THE FT-2 TOKAMAK

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the experiments at the FT-2 tokamak, it was ascertained that the additional puffing of working gas into the region immediately adjacent to the radiating antenna suppresses the development of parametric instability, which is considered to be the main obstacle to efficient penetration of the lower hybrid wave into the inner regions of the tokamak plasma. Using probe measurements, radial profiles of electron density and temperature in the scrape-off layer (SOL) were obtained, as well as their changes during the lower hybrid pulse were traced. It was shown that local gas puffing causes toroidal inhomogeneity of the edge plasma parameters. By means of performing direct measurements, the effect of plasma "forcing-out" from the frontal region of the radiating antenna under the action of ponderomotive force in the field of the introduced wave was detected. The effect of ponderomotive force on the edge plasma parameters and, as a consequence, on the antenna-plasma coupling efficiency should be taken into account in large-sized facilities at high powers.

About the authors

S. V Shatalin

Ioffe Institute

Email: s.shatalin@mail.ioffe.ru
St. Petersburg, Russian Federation

M. V Deriabina

Ioffe Institute

St. Petersburg, Russian Federation

A. B Altukhov

Ioffe Institute

St. Petersburg, Russian Federation

E. Z Gusakov

Ioffe Institute

St. Petersburg, Russian Federation

V. V Dyachenko

Ioffe Institute

St. Petersburg, Russian Federation

L. A Esipov

Ioffe Institute

St. Petersburg, Russian Federation

M. A Irzak

Ioffe Institute

St. Petersburg, Russian Federation

A. N Konovalov

Ioffe Institute

St. Petersburg, Russian Federation

S. I Lashkul

Ioffe Institute

St. Petersburg, Russian Federation

A. Yu Popov

Ioffe Institute

St. Petersburg, Russian Federation

References

  1. Голант В.Е., Федоров В.И. Высокочастотные методы нагрева плазмы в тороидальных термоядерных установках. М.: Энергоатомиздат, 1986.
  2. Fisch N.J. // Phys. Rev. Lett. 1978 V. 41. P. 873.
  3. Bernabei S., Daughney C., Efthimion P., Hooke W., Hosea J., Jobes F., Martin A., Mazzucato E., Meservey E., Motley R., Stevens J., Von Goeler S., Wilson R. // Phys. Rev. Lett. 1982. V. 49. P. 1255.
  4. Fisch N.J. // Rev. Mod. Phys. 1987. V. 59. P. 175.
  5. Ekedah A., Granucci G., Mailloux J., Baranov Y., Erents S.K., Joffrin E., Litaudon X., Loarte A., Lomas P.J., McDonald D.C., Petrzilka V., Rantamaki K., Rimini F.G., Silva C., Stamp M., Tuccillo A.A., and JET EFDA Contributors. // Nucl. Fusion. 2005. V. 45. P. 351. doi: 10.1088/0029-5515/45/5/005.
  6. Barbato E. // Nucl. Fusion. 2011. V. 51. 103032. doi: 10.1088/0029-5515/51/10/103032.
  7. Ott E. // Phys. Fluids. 1979. V. 22. P. 1732. doi: 10.1063/1.862809.
  8. Pericoli-ridolfini V., Giannone L., Bartirono R. // Nucl. Fusion. 1994. V. 34. P. 469. doi: 10.1088/0029-5515/34/4/101.
  9. Porkolab M. // Phys. Fluids. 1977. V. 20. P. 2058. doi: 10.1063/1.861825.
  10. Hooke W. // Plasma Phys. Control. Fusion. 1984. V. 26. P. 133. doi: 10.1088/0741-3335/26/1A/312.
  11. Takase Y., Porkolab M., Schuss J.J., Watterson R.L., Flore C.L., Slusher R.E., Surko C.M. // Phys. Fluids. 1985. V. 28. P. 983. doi: 10.1063/1.865070.
  12. Лашкул С.И., Алтухов А.Б., Гурченко А.Д., Гусаков Е.З., Дьяченко В.В., Есипов Л.А., Ирзак М.А., Каипор М.Ю., Куприенко Д.В., Савельев А.Н., Степанов А.Ю., Шаталин С.В. // Физика плазмы. 2015. Т. 41. С. 1069. doi: 10.7868/S0367292115120082.
  13. Castaldo C., Di Siena A., Fedele R., Napoli F., Amicucci L., Cesario R., Schettini G. // Nucl. Fusion. 2016. V. 56. 016003. doi: 10.1088/0029-5515/56/1/016003.
  14. Лашкул С.И., Алтухов А.Б., Гурченко А.Д., Гусаков Е.З., Дьяченко В.В., Есипов Л.А., Коновалов А.Н., Куприенко Д.В., Шаталин С.В., Степанов А.Ю. // Физика плазмы. 2022. T. 48. С. 387. doi: 10.31857/S0367292122200033.
  15. Irzak M.A., Shcherbinin O.N. // Nucl. Fusion. 1995. V. 35 P. 1341. doi: 10.1088/0029-5515/35/11/102.
  16. Лашкул С.И., Алтухов А.Б., Гурченко А.Д., Дьяченко В.В., Есипов Л.А., Каипор М.Ю., Куприенко Д.В., Ирзак М.А., Савельев А.Н., Сидоров А.В., Степанов А.Ю., Шаталин С.В. // Физика плазмы. 2010. T. 36. С. 803.
  17. Шаталин С.В., Векашина Е.О., Гончаров П.Р., Есипов Л.А., Лашкул С.И. // Физика плазмы. 2004. T. 30. С. 398.
  18. Левицкий А.Н., Сахаров И.Е., Шаталин С.В. // ПТЭ. 1995. Вып. 5. С. 153.
  19. Дьяченко В.В., Алтухов А.Б., Гусаков Е.З., Есипов Л.А., Коновалов А.Н., Лашкул С.И., Степанов А.Ю., Шаталин С.В. // Физика плазмы. 2021. T. 47. С. 291. doi: 10.31857/S0367292121040053.
  20. Гапонов А.В., Милер М.А. // ЖЭТФ. 1958. T. 34. С. 242.
  21. Petrzilka V.A., Leuterer F., Soldner F.-X., Giannone L., Schubert R. // Nucl. Fusion. 1991. V. 31. P. 1758. doi: 10.1088/0029-5515/31/9/014.
  22. Karpman V.I., Shagalov A.G. // J. Plasma Physics. 1982. V.27. P. 215. DOI: https://doi.org/10.1017/S0022377800026544.
  23. Alukhov A.B., Bulanin V.V., Esipov L.A., Dyachenko V.V., Gorokhov M.V., Gurchenko A.D., Gusakov E.Z., Irzak M.A., Kantor M.Yu., Kouprienko D.V., Lashkul S.I., Petrov A.V., Saveliev A.N., Stepanov A.Yu., Shatalin S.V., Vekshina E.O. // Proc. 31st EPS Conference on Plasma Phys, London, 2004 // ECA. 2004. Vol. 28B. P-1.174.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences