Применение метода энергодисперсионной рентгеновской спектроскопии для количественной оценки химического состава магматических горных пород

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена возможность применения метода энергодисперсионной рентгеновской спектроскопии для количественной оценки химического состава магматических горных пород без их перевода в раствор. Проведена статистическая обработка результатов измерений и показана погрешность метода по сравнению с методом спектрометрии с индуктивно связанной плазмой.

Полный текст

Доступ закрыт

Об авторах

Е. Н. Печёнкина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

В. А. Кренёв

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

С. В. Фомичёв

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Д. Ф. Кондаков

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Е. И. Бербекова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

А. А. Михайловa

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: pechenkina@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Bol’shakov A.A., Ganeev A.A., Nemets V.M. // Russ. Chem. Rev. 2013. V. 75. P. 289. https://doi.org/10.1070/RC2006v075n04ABEH001174
  2. Горбатенко А.А., Ревина Е.И. // Заводская лаборатория. Диагностика материалов. 2014. Т. 80. № 4. С. 7.
  3. Пупышев A.A., Данилова Д.А. // Аналитика и контроль. 2007. Т. 11. № 2–3. С. 131.
  4. Makishima A., Tanaka R., Nakamura E. // Anal. Sci. 2009. V. 25. P. 1181. https://doi.org/10.2116/analsci.25.1181
  5. Hu Z., Gao S., Liu Y. et al. // J. Anal. At. Spectrom. 2010. V. 25. P. 408. https://doi.org/10.1039/b921006g
  6. Zhang W., Hu Z., Liu Y. et. al. // Geostandards and Geoanalytical Research. 2012. V. 36. P. 271.
  7. Potts P.J., Webb P.C., Thompson M. // Geostandards and Geoanalytical Research. 2015. V. 39. P. 315. https://doi.org/10.1111/j.1751-908X.2014.00305.x
  8. Окина О.И., Ляпунов С.М., Дубенский А.С. и др. // Бюл. Моск. об-ва испытателей природы. Отд. геол. 2017. Т. 92. Вып. 5. С. 93.
  9. Окина О.И., Ляпунов С.М., Ермолаев Б.В. и др. // 18 Междунар. конф. “Физико-химические и петрофизические исследования в науках о Земле” М.: ИГЕМ РАН, 2018. С. 372.
  10. Butler O.T., Cairns W.R.L., Cook J.M. et al. // J. Anal. At. Spectrom. 2018. V. 33. № 1. P. 8. http://dx.doi.org/10.1039/c7ja90059g
  11. Zawisza B., Pytlakowska K., Feist B. et al. // J. Anal. At. Spectrom. 2011. V. 26. P. 2373. https://doi.org/10.1039/c1ja10140d
  12. Землянкина А.С., Коркина Д.А., Гринштейн И.Л. // Заводская лаборатория. Диагностика материалов. 2014. Т. 80. № 11. С. 19.
  13. Медведев А.А., Посеренин А.И. // Горный информационно-аналитический бюллетень. 2017. № 12. С. 170. https://doi.org/10.25018/0236-1493-2017-12-0-170-175
  14. Медведев А.А., Посеренин А.И. // Горный информационно-аналитический бюллетень. 2016. № 11. С. 115.
  15. Ревенко А.Г. // Аналитика и контроль. 2010. Т. 14. № 2. С. 42.
  16. Duma Z.-S., Sihvonen T., Havukainen J. et al. // Micron. 2022. V. 163. № 12. P. 1. https://doi.org/10.1016/j.micron.2022.103361
  17. Лейпунская Д.И., Гауэр З.Е., Флеров Г.Н. // Атомная энергия. 1959. Т. 6. № 3. С. 315.
  18. Нарзыкулов Н.Б. // Атомная энергия. 1968. Т. 24. № 1. С. 104.
  19. Attallah M.F., Abdou F.S., Aly H.F. // Radiochim. Acta. 2021. V. 109. № 3. P. 225. https://doi.org/10.1515/ract-2020-0101.
  20. Greenberg R.R., Bode P., Fernandes E.A.D.N. // Spectrochim. Acta, Part B. 2011. V. 66. P. 193.
  21. Дарьин А.В., Ракшун Я.В. // Научный вестник НГТУ. 2013. № 2. С. 112.
  22. Obiajunwa E.I. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interactions with Materials and Atoms. 2001. V. 184. № 3. P. 437. https://doi.org/10.1016/S0168-583X(01)00766-2
  23. Abbasi S.A., Rafique M., Mirb A.A. et al. // J. Radiation Res. Appl. Sci. 2020. V. 13. № 1. P. 362. https://doi.org/10.1080/16878507.2020.1739801
  24. Escárate P., Bailo D., Guesalaga A. et al. // Miner. Eng. 2009. V. 22. № 6. P. 566. https://doi.org/10.1016/j.mineng.2009.01.009
  25. Кренев В.А., Фомичев С.В., Печёнкина Е.Н. и др. // Хим. технология. 2021. Т. 22. № 2. С. 69. https://doi.org/10.31044/1684-5811-2021-22-2-69-7
  26. Печёнкина Е.Н., Бербекова Е.И., Кондаков Д.Ф. и др. // Хим. технология. 2022. Т. 23. № 9. С. 399. https://doi.org/10.31044/1684-5811-2022-23-9-399-401
  27. Krenev V.A., Fomichev S.V., Pechenkina E.N. // Russ. J. Inorg. Chem. 2019. V. 64. № 11. P. 1446. https://doi.org/10.1134/S0036023619110093
  28. Печёнкина Е.Н., Кренёв В.А., Фомичёв С.В. и др. // Хим. технология. 2023. № 7. С. 247.
  29. Печёнкина Е.Н., Кренёв В.А., Фомичёв С.В. и др. // Хим. технология. 2023. № 10. С. 362.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Микрофотография андезибазальта при увеличении 200×.

Скачать (307KB)
3. Рис. 2. Микрофотография андезибазальта при увеличении 500×.

Скачать (262KB)
4. Рис. 3. Микрофотография андезибазальта при увеличении 1000×.

Скачать (239KB)
5. Рис. 4. Спектр образца андезибазальта, полученный при увеличении 500×.

Скачать (116KB)

© Российская академия наук, 2024