Determination Of Optimal Conditions For Template Sol-Gel Synthesis For The Formation Of Antibacterial Materials

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

One of the current global problems is the increasing resistance of microorganisms to antibacterial agents and the emergence of associated infections. Therefore, the synthesis of new hybrid materials capable of resisting bacteria is necessary. In this work, loading platforms for antibacterial material based on tetraethoxysilane were formed using yeast cells Ogataea polymorpha BKM Y-2559 and Cryptococcus curvatus VKM Y-3288 as templates under conditions of acid and alkaline hydrolysis. Using scanning electron microscopy, it was shown that an alkaline environment is most optimal when using yeast cells as templates for the formation of a porous material. The surface-active properties of a number of quaternary ammonium compounds were studied using the tensometry method to select the optimal template for the production of antibacterial materials in one stage.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Lantsova

Tula State University

Хат алмасуға жауапты Автор.
Email: e.a.lantsova@tsu.tula.ru
Ресей, Tula, 300012

M. Bardina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
Ресей, Tula, 300012

E. Saverina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
Ресей, Tula, 300012

O. Kamanina

Tula State University

Email: e.a.lantsova@tsu.tula.ru
Ресей, Tula, 300012

Әдебиет тізімі

  1. Cámara M., Green W., MacPhee C. et al. // Biofilms Microbiomes. 2022. V. 8. № 1. P. 42. https://doi.org/10.1038/s41522-022-00306-y
  2. Nadeem S., Gohar U., Tahir S. et al. // Crit. Rev. Microbiol. 2020. V. 46. № 5. P. 578. https://doi.org/10.1080/1040841X.2020.1813687
  3. Murray C.J.L., Ikuta K.S., Sharara F. et al. // Lancet. 2022. V. 399. № 10325. P. 629. https://doi.org/10.1016/S0140-6736(21)02724-0
  4. Saverina E.A., Frolov N.A., Kamanina O.A. et al. // ACS Infect. Dis. 2023. V. 9. № 3. P. 394. https://doi.org/10.1021/acsinfecdis.2c00469
  5. Nielsen J.E., Alford M.A., Yung D.B.Y. et al. // ACS Infect. Dis. 2022. V. 8. № 3. P. 533. https://doi.org/10.1021/acsinfecdis.1c00536
  6. Song B., Zhang E., Han X. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 19. P. 21330. https://doi.org/10.1021/acsami.9b19992
  7. Spirescu V.A., Chircov C., Grumezescu A.M. et al. // Int. J. Mol. Sci. 2021. V. 22. № 9. P. 4595. https://doi.org/10.3390/ijms22094595
  8. Zhang T., Jin Z., Jia Z. et al. // React. Funct. Polym. 2022. V. 170. P. 105117. https://doi.org/10.1016/j.reactfunctpolym.2021.105117
  9. Ma B., Chen Y., Hu G. et al. // ACS Biomater. Sci. Eng. 2022. V. 8. № 1. P. 109. https://doi.org/10.1021/acsbiomaterials.1c01267
  10. Alekseeva O.V., Smirnova D.N., Noskov A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 8. P. 953. https://doi.org/10.1134/S0036023623601071
  11. Wen M., Fu X., Li T. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 9. P. 2371. https://doi.org/10.1134/S1070363223090189
  12. Diaz D., Church J., Young M. et al. // J. Environ. Sci. 2019. V. 82. P. 213. https://doi.org/10.1016/j.jes.2019.03.011
  13. Zhang H., Liu L., Hou P. et al. // Polymers. 2022. V. 14. № 9. P. 1737. https://doi.org/10.3390/polym14091737
  14. Feng X.Z., Xiao Z., Zhang L. et al. // Nat. Prod. Commun. 2020. V. 15. № 8. P. 1934578X20948365. https://doi.org/10.1177/1934578X20948365
  15. Garipov M.R., Sabirova A.E., Pavelyev R.S. et al. // Bioorg. Chem. 2020. V. 104. P. 104306. https://doi.org/10.1016/j.bioorg.2020.104306
  16. Sokolova A.S., Yarovaya O.I., Baranova D.V. et al. // Arch. Virol. 2021. V. 166. № 7. P. 1965. https://doi.org/10.1007/s00705-021-05102-1
  17. Gaspar C., Rolo J., Cerca N. et al. // Pathogens. 2021. V. 10. № 3. P. 261. https://doi.org/10.3390/pathogens10030261
  18. Bueno V., Ghoshal S. // Langmuir. 2020. V. 36. № 48. P. 14633. https://doi.org/10.1021/acs.langmuir.0c02501
  19. Zaharudin N.S., Isa E.D.M., Ahmad H. et al. // J. Saudi Chem. Soc. 2020. V. 24. № 3. P. 289. https://doi.org/10.1016/j.jscs.2020.01.003
  20. Stewart C.A., Finer Y., Hatton B.D. // Sci. Rep. 2018. V. 8. № 1. P. 1. https://doi.org/10.1038/s41598-018-19166-8
  21. Hoa B.T., Phuc L.H., Hien N.Q. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 63. https://doi.org/10.1134/S003602362260160X
  22. Kamanina O.A., Saverina E.A., Rybochkin P.V. et al. // Nanomaterials. 2022. V. 12. № 7. P. 1086. https://doi.org/10.3390/nano12071086
  23. Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 401. https://doi.org/10.1134/S0036023622030068
  24. Voronova M.I., Surov O.V., Rubleva N.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 395. https://doi.org/10.1134/S0036023622030159
  25. Ebrahiminezhad A., Najafipour S., Kouhpayeh A. et al. // Colloids Surf., B: Biointerfaces. 2014. V. 118. P. 249. https://doi.org/10.1016/j.colsurfb.2014.03.052
  26. Dubovoy V., Ganti A., Zhang T. et al. // J. Am. Chem. Soc. 2018. V. 140. № 42. P. 13534. https://doi.org/10.1021/jacs.8b04843
  27. Bokov D., Turki Jalil A., Chupradit S. et al. // Adv. Mater. Sci. Eng. 2021. P. 1. https://doi.org/10.1155/2021/5102014
  28. Yamamoto M., Takami T., Matsumura R. et al. // Biocontrol Sci. Jpn. 2016. V. 21. № 4. P. 231. https://doi.org/10.4265/bio.21.231
  29. Frolov N.A., Fedoseeva K.A., Hansford K. et al. // ChemMedChem. 2021. V. 16. № 19. P. 2954. https://doi.org/10.1002/cmdc.202100284
  30. Seferyan M.A., Saverina E.A., Frolov N.A. et al. // ACS Infect. Dis. 2023. V. 9. № 6. P. 1206. https://doi.org/10.1021/acsinfecdis.2c00546
  31. Xu J., Ren D., Chen N. et al. // Colloids Surf., A: Physicochem. 2021. V. 625. P. 126845. https://doi.org/10.1016/j.colsurfa.2021.126845
  32. Esmaeili H., Mousavi S.M., Hashemi S.A. et al. Chapter 7 – Application of biosurfactants in the removal of oil from emulsion. Elsevier, 2021. P. 107. https://doi.org/10.1016/B978-0-12-822696-4.00008-5
  33. Azum N., Alotaibi M.M., Ali M. et al. // J. Mol. Liq. 2023. V. 259. P. 121057. https://doi.org/10.1016/j.molliq.2022.121057

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.

Жүктеу (44KB)
3. Fig. 1. The scheme of the traditional synthesis of sol-gel matrices with subsequent loading of an antimicrobial drug (a) and synthesis of a drug using an HOUR as a template (b) [20].

Жүктеу (416KB)
4. Fig. 2. Acid hydrolysis in the absence of cells: a – bar-label 50 microns, b– bar-label 5 microns; c, d – acid hydrolysis in the presence of Ogataea polymorpha cells (bar-label 5 microns), d – alkaline hydrolysis in the absence of cells (bar-label 10 microns), e – alkaline hydrolysis in the presence of Cryptococcus curvatus cells (bar label 5 microns).

Жүктеу (697KB)
5. Fig. 3. Structures of the compounds studied in the work. Compounds 1a–1g were first described in [26], compound 2 in [27].

Жүктеу (49KB)
6. Fig. 4. Curves of dependence of MFN on the concentration of a solution of a series of compounds 1 (a), compounds 2 (b).

Жүктеу (144KB)

© Russian Academy of Sciences, 2024