SYNTHESIS, THERMAL AND ELECTRICAL PROPERTIES OF Bi2NiNb2O9 WITH PYROCHLORE STRUCTURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nickel-containing cubic pyrochlore Bi2NiNb2O9 (sp. gr. Fd3m, a = 10.53657(6) Å) was synthesized by the citrate method. At the synthesis temperature of 1050°C, low-porosity ceramics with unclear grain boundary outlines are formed. The disordered structure of pyrochlore (sp. gr. Fd3m, a = 10.53784 Å, Z = 4) was refined by the Rietveld method based on X-ray powder diffraction data. The studied pyrochlore belongs to isotropically expanding oxide compounds with an average value of the thermal expansion coefficient of (6.4 × 10−6)°C−1 in the range of 30–750°C. Above 1110°C, thermal dissociation of Bi2NiNb2O9 occurs with the formation of the impurity phase NiNb2O6. Bi2NiNb2O9 is characterized by a high activation energy of 1.43 eV and a frequency- and temperature-independent permittivity of 144 (up to 300°C), low dielectric losses of ~ 0.002 at 1 MHz. The studied ceramics can be used as a high-frequency dielectric material in the creation of multilayer ceramic capacitors.

About the authors

K. A Badanina

Syktyvkar State University

Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167001 Russia

N. A Sekushin

Institute of Chemistry of the Komi Science Center UB RAS

Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167982 Russia

M. G Krzhizhanovskaya

Saint Petersburg State University

Email: Badanina-Ksenia@mail.ru
St. Petersburg, 199034 Russia

N. A Zhuk

Syktyvkar State University

Author for correspondence.
Email: Badanina-Ksenia@mail.ru
Syktyvkar, 167001 Russia

References

  1. Hiroi Z., Yamaura J.-I., Yonezawa S. et al. // Physica C. 2007. V. 460–462. P. 20. https://doi.org/10.1016/j.physc.2007.03.023
  2. Giampaoli G., Siritanon T., Day B. et al. // Prog. Solid State Chem. 2018. V. 50. P. 16. https://doi.org/10.1016/j.progsolidstchem.2018.06.001
  3. Pandey J., Shrivastava V., Nagarajan R. // Inorg. Chem. 2018. V. 57. № 21. P. 13667. https://doi.org/10.1021/acs.inorgchem.8b02258
  4. Yu S., Li L., Zheng H. // Alloys Compd. 2017. V. 699. P. 68. https://doi.org/10.1016/j.jallcom.2016.12.333
  5. Guo Q., Li L., Yu S. et al. // Ceram. Int. 2018. V. 44. № 1. P. 333. https://doi.org/10.1016/j.ceramint.2017.09.177
  6. Vanderah T.A., Siegrist T., Lufaso M.W. et al. // Eur. J. Inorg. Chem. 2006. V. 2006. № 23. P. 4908. https://doi.org/10.1002/ejic.200600661
  7. Miles G.C., West A.R. // J. Am. Ceram. Soc. 2006. V. 89. № 3. P. 1042. https://doi.org/10.1111/j.1551-2916.2005.00799.x
  8. Subramanian M.A., Aravanmadan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  9. Zhuk N.A., Kryhizhanovskaya M.G., Koroleva A.V. et al. // Inorg. Chem. 2021. V. 60. № 7. P. 4924. https://doi.org/10.1021/acs.inorgchem.1e00007
  10. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // J. Mater. Res. Technol. 2023. V. 22. P. 1791. https://doi.org/10.1016/j.jmrt.2022.12.059
  11. Vanderah T.A., Lufaso M.W., Adler A.U. et al. // J. Solid State Chem. 2006. V. 179. P. 3467. https://doi.org/10.1016/j.jssc.2006.07.014
  12. Zhuk N.A., Badannia K.A., Korolev R.I. et al. // Inorganics. 2023. V. 11. № 7. P. 288. https://doi.org/10.3390/inorganics11070288
  13. Valant M., Suvorov D. // J. Am. Ceram. Soc. 2005. V. 88. № 9. P. 2540. https://doi.org/10.1111/j.1551-2916.2005.00439.x
  14. Hassan A., Mustafa G.M., Abbas S.K. et al. // Ceram. Int. 2019. V. 45. № 12. P. 14576. https://doi.org/10.1016/j.ceramint.2019.04.175
  15. Tan P.Y., Tan K.B., Khaw C.C. et al. // Ceram. Int. 2014. V. 40. № 3. P. 4237. https://doi.org/10.1016/j.ceramint.2013.08.087
  16. Guo Q., Li L., Yu S. et al. // Ceram. Int. 2018. V. 44. № 1. P. 333. https://doi.org/10.1016/j.ceramint.2017.09.177
  17. Dasin N.A.M., Tan K.B., Khaw C.C. et al. // Mater. Chem. Phys. 2019. V. 242. P. 122558. https://doi.org/10.1016/j.matchemphys.2019.122558
  18. Abdullah A., Wan Khalid W.E.F., Abdullah S.Z. // Appl. Mechanics and Materials. 2015. V. 749. P. 30. https://doi.org/10.4028/www.scientific.net/AMM.749.30
  19. Bruker AXS. Topas 5.0. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany. 2014.
  20. Bubnova R.S., Firsova V.A., Filatov S.K. // Glass Phys. Chem. 2013. V. 39. № 3. P. 347. https://doi.org/10.1134/S108765961303005X
  21. Langreiter T., Kahlenberg V. // Crystals. 2015. V. 5. № 1. P. 143. https://doi.org/10.3390/cryst5010143
  22. Mansie T.J.S., Millington A., Dube P.A. et al. // J. Solid State Chem. 2016. V. 236. P. 19. https://doi.org/10.1016/j.jssc.2015.07.048
  23. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // Ceram. Int. 2023. V. 49. № 2. P. 2934. https://doi.org/10.1016/j.ceramint.2022.09.278
  24. Zhuk N.A., Kryhizhanovskaya M.G., Sekushin N.A. et al. // ACS Omega. 2021. V. 6. № 36. P. 23262. https://doi.org/10.1021/acsomega.1c02969
  25. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  26. Koroleva M.S., Pitt I.V., Istomin E.I. // Chim. Techno Acta. 2017. V. 4. № 4. P. 231. https://doi.org/10.15826/chimtech/2017.4.4.04
  27. Nguyen H.B., Norén L., Liu Y. et al. // J. Solid State Chem. 2007. V. 180. № 9. P. 2558. https://doi.org/10.1016/j.jssc.2007.07.003
  28. Zhuk N.A., Kryhizhanovskaya M.G. // Ceram. Int. 2021. V. 47. № 21. P. 30099. https://doi.org/10.1016/j.ceramint.2021.07.187
  29. Alfred A.L., Rochow E.G. // J. Inorg. Nucl. Chem. 1958. V. 5. № 4. P. 264. https://doi.org/10.1016/0022-1902(58)80003-2
  30. Zhuk N.A., Kryhizhanovskaya M.G., Belyy V.A. et al. // Chem. Mater. 2020. V. 32. № 13. P. 5493. https://doi.org/10.1021/acs.chemmater.0c00010
  31. Kurty K.V.G., Rajagopalan S., Mathews C.K. et al. // Mater. Res. Bull. 1994. V. 29. № 7. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1
  32. Shukla R., Vasundhara K., Krishna P.S.R. et al. // Int. J. Hydrogen Energy. 2015. V. 40. № 45. P. 15672. https://doi.org/10.1016/J.IJHYDENE.2015.09.059
  33. Raison P.E., Pavel C.C., Jardin R. et al. // Phys. Chem. Miner. 2010. V. 37. P. 555. https://doi.org/10.1007/s00269-010-0356-5
  34. Feng J., Xiao B., Zhou R. et al. // J. Appl. Phys. 2012. V. 111. P. 103535. https://doi.org/10.1063/1.4722174
  35. Qun-bo F., Feng Z., Fu-chi W. et al. // Comput. Mater. Sci. 2009. V. 46. № 3. P. 716. https://doi.org/10.1016/j.commatsci.2009.02.033
  36. Zhang Y., Zhang Z., Zhu X. et al. // Appl. Phys. A. 2013. V. 115. № 2. P. 661. https://doi.org/10.1007/s00339-013-7843-8
  37. Osman R.A.M., Maos N., West A.R. // J. Am. Ceram. Soc. 2012. V. 95. № 1. P. 296. https://doi.org/10.1111/j.1551-2916.2011.04779.x
  38. Valant M. // J. Am. Ceram. Soc. 2009. V. 92. № 4. P. 955. https://doi.org/10.1111/j.1551-2916.2009.02984.x
  39. Cam D.P., Randall C.A., Shrout T.R. // Solid State Commun. 1996. V. 100. № 7. P. 529. https://doi.org/10.1016/0038-1098(96)00012-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences