Anion-Exchange Resin Precipitation of Nickel Ferrite Nanopowders Modified by Plasmonic Particles
- Authors: Saikova S.V.1,2, Nemkova D.I.2, Pikurova E.V.1,2, Samoilo A.S.2
 - 
							Affiliations: 
							
- Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
 - Siberian Federal University
 
 - Issue: Vol 68, No 8 (2023)
 - Pages: 1011-1020
 - Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://transsyst.ru/0044-457X/article/view/665205
 - DOI: https://doi.org/10.31857/S0044457X23600160
 - EDN: https://elibrary.ru/MKWNNB
 - ID: 665205
 
Cite item
Abstract
Magnetic nickel ferrite/gold hybrid nanoparticles are promising materials for use in medicine, microelectronics, and plasmon-enhanced photocatalysis. The catalytic activity of a hybrid material depends on the composition, morphology, surface charge, and size of the magnetic core. In this work, anion-exchange resin coprecipitation of iron and nickel followed by heat treatment of the prepared hydroxides was used to manufacture nickel ferrite NiFe2O4 nanopowders. Fractional factorial design (FFD 27-4) was used to study the effects of reaction parameters on NiFe2O4 formation. The synthesis under the found optimal conditions yielded powders with an average grain size of 22.7 ± 1.0 nm. NiFe2O4/Au hybrid particles were manufactured by the direct reduction of gold with methionine (α-amino-γ-methylthiobutyric acid). Their formation was proved by optical spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.
Keywords
About the authors
S. V. Saikova
Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University
														Email: ssai@mail.ru
				                					                																			                												                								660036, Akademgorodok, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia						
D. I. Nemkova
Siberian Federal University
														Email: ssai@mail.ru
				                					                																			                												                								660041, Krasnoyarsk, Russia						
E. V. Pikurova
Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences; Siberian Federal University
														Email: ssai@mail.ru
				                					                																			                												                								660036, Akademgorodok, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia						
A. S. Samoilo
Siberian Federal University
							Author for correspondence.
							Email: ssai@mail.ru
				                					                																			                												                								660041, Krasnoyarsk, Russia						
References
- Alyabyev S.B., Beletskaya I.P. // Russ. Chem. Rev. 2017. V. 86. P. 689. https://doi.org/10.1070/RCR4727
 - Redina E.A., Greish A.A., Mishin I.V. et al. // Catal. Today. 2015. V. 241. P. 246. https://doi.org/10.1016/j.cattod.2013.11.065
 - Кривенцов В.В., Володин А.М., Новгородов Б.Н. и др. // Химическая физика и мезоскопия. 2019. Т. 21. № 1. С. 29. https://doi.org/10.15350/17270529.2019.1.5
 - Ямен А., Попков В.И. // Медицина: теория и практика. 2019. Т. 4. С. 35.
 - Мелешко А.А., Афиногенова А.Г., Афиногенов Г.Е. и др. // Инфекция и иммунитет. 2020. Т. 10. № 4. С. 639. https://doi.org/10.15789/2220-7619-AIA-1512
 - Silvestri A., Mondini S., Marelli M. et al. // Langmuir. 2016. V. 32. № 28. P. 7117. https://doi.org/10.1021/acs.langmuir.6b01266
 - Saire-Saire S., Barbosa E.C.M., Garcia D. et al. // RSC Adv. 2019. V. 9. № 38. P. 22116. https://doi.org/10.1039/C9RA04222A
 - Wang X., Wang L., Lim I.-I.S. et al. // J. Nanosci. Nanotechnol. 2009. V. 9. № 5. P. 3005. https://doi.org/10.1166/jnn.2009.206
 - Lin F., Doong R. // Appl. Catal., A: General. 2014. V. 486. P. 32. https://doi.org/10.1016/j.apcata.2014.08.013
 - Dom R., Subasri R., Radha K., Borse P.H. // Solid State Commun. 2011. V. 151. P. 470. https://doi.org/10.1080/17458080.2012.690893
 - Peymanfar R., Ramezanalizadeh H. // Optik. 2018. V. 169. P. 424. https://doi.org/10.1016/j.ijleo.2018.05.072
 - Yang H., Zhang X., Weiqin A., Guanzhou Q. // Mater. Res. Bull. 2004. V. 39. № 6. P. 833.
 - Azizi A., Sadrnezhaad S.K. // Ceram. Int. 2010. V. 36. P. 2241. https://doi.org/10.1016/j.ceramint.2010.06.004
 - Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 37. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
 - Лисневская И.В., Боброва И.А., Петрова А.В., Лупейко Т.Г. // Журн. неорган. химии. 2012. Т. 57. С. 535.
 - Sivakumar P., Ramesh R., Ramanand A. et al. // Mater. Res. Bull. 2011. V. 46. P. 2208.
 - Mana R., Raguram T., Rajni K.S. // Mater. Today: Proc. 2019. V. 18. P. 1753.
 - Chen D.H., He X.R. // Mater. Res. Bull. 2001. V. 36. P. 1369. https://doi.org/10.1016/S0025-5408(01)00620-1
 - Hassan A., Khan M.A., Shahid M. et al. // J. Magn. Magn. Mater. 2015. V. 393. P. 56. https://doi.org/10.1016/j.jmmm.2015.05.033
 - Velmurugan K., Venkatachalapathy V.S.K., Sendhilnathan S. // Mater. Res. 2010. V. 13 P. 299. https://doi.org/10.1590/S1516-14392010000300005
 - Gadkari A.B., Shinde T.J., Vasambekar P.N. // J. Mater. Sci.: Mater. Electron. 2010. V. 21. P. 96. https://doi.org/10.1007/s10854-009-9875-6
 - Maaz K., Karim S., Mumtaz A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1838. https://doi.org/10.1016/j.jmmm.2008.11.098
 - Пат. РФ RU 2771498. Опубл. 05.05.2022.
 - Pashkov G.L., Saikova S.V., Panteleeva M.V. // Theor. Found. Chem. Eng. 2016. V. 50. № 4. P. 575. https://doi.org/10.1134/S0040579516040254
 - Сайкова С.В., Киршнева Е.А., Пантелеева М.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1013.
 - Сайкова С.В., Киршнева Е.А., Фадеева Н.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 158.
 - Mikalauskaite A., Kondrotas R., Niaura G., Jagminas A. // J. Phys. Chem. 2015. V. 119. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
 - Saykova D., Saikova S., Mikhlin Yu. et al. // Metals. 2020. V. 10. P. 1075. https://doi.org/10.3390/met10081075
 - Saikova S., Pavlikov A., Trofimova T. et al. // Metals. 2020. V. 11. № 5. https://doi.org/10.3390/met11050705
 - Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. Федер. ун-т, 2018. 198 с.
 - Вулих А.И. Ионообменный синтез. М.: Химия, 1973. 232 с.
 - Сайкова С.В., Пантелеева М.В., Николаева Р.Б. // Журн. прикл. химии. 2002. Т. 75. № 11. С. 1823.
 - Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976 г. 280 с.
 - Сайкова С.В., Трофимова Т.В., Павликов А.Ю., Самойло А.С. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 287.
 - Rio I.S.R., Rodrigues A.R.O., Rodrigues C.P. et al. // Materials. 2020. V. 13. № 4. P. 815. https://doi.org/10.3390/ma13040815
 - Meledandri C. J., Stolarczyk J. K., Brougham D.F. // ACS Nano. 2011. V. 5. № 3. P. 1747. https://doi.org/10.1021/nn102331c
 - An P., Zuo F., Li X. et al. // Nano. 2013. V. 8. № 6. P. 1350061. https://doi.org/10.1142/S1793292013500616
 - Stoeva S.I., Huo F., Lee J.-S., Mirkin C.A. // J. Am. Chem. Soc. 2005. V. 127. № 44. P.15362. https://doi.org/10.1021/ja055056d
 - Kim G., Weiss S.J., Levine R.L. // Biochim. Biophys. Acta. 2014. V. 1840. № 2. P. 901. https://doi.org/10.1016/j.bbagen.2013.04.038
 - Glisic B.D., Djuran M.I., Stanic Z.D., Rajkovic S. // Gold Bull. 2014. V. 47. № 2. P. 33. https://doi.org/10.1007/s13404-013-0108-7
 - Mie G. // Ann. Phys. 1908. V. 25. № 2. P. 377. https://doi.org/10.1002/andp.19083300302
 - Henglein A. // J. Phys. Chem. 1993. V. 97. № 21. P. 5451.
 
Supplementary files
				
			
					
						
						
						
						
									










