Carbon nanomaterials. Electron paramagnetic resonance

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Electron paramagnetic resonance (EPR) is a widely used instrumental research method in chemistry, physics, biology, and materials science that can be successfully applied to characterize the electronic structure of carbon nanomaterials. This work presents a brief review of studies of various types of carbon nanostructures (CNS) by EPR, including measurement techniques, principles of spectral data processing and interpretation, and experimental results. The relationship between the properties of CNS and the nearest environment of paramagnetic centers, oxidation, and degradation of materials with time is analyzed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Ulyanov

M. V. Lomonosov Moscow State University

Email: savilov@mail.ru

Department of Chemistry

Ресей, Moscow, 119991

N. Kuznetsova

M. V. Lomonosov Moscow State University

Email: savilov@mail.ru

Department of Chemistry

Ресей, Moscow, 119991

S. Savilov

M. V. Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: savilov@mail.ru

Department of Chemistry

Ресей, Moscow, 119991

Әдебиет тізімі

  1. B. Wang W., Likodimos V., Fielding A.J. et al. // Carbon N.Y. 2020. V. 160. P. 236.
  2. Kempiński M. // Mater. Lett. 2018. V. 230. P. 180.
  3. Sun Y., Wang X., Tang B. et al. // Mater. Lett. 2017. V. 189. P. 54.
  4. Fei Y., Fang S., Hu Y.H. // Chem. Eng. J. 2020. V. 397. P. 125408.
  5. Tiwari S., Purabgola A., Kandasubramanian B. // J. Alloys Compd. 2020. V. 825. P. 153954.
  6. Xia H., Wang Y., Lin J. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 33.
  7. Chen X., Wang L., Li W. et al. // Nano Res. 2013. V. 6. P. 619.
  8. Lebepe T.C., Parani S., Vuyelwa N. et al. // Mater. Lett. 2020. V. 279. P. 128470.
  9. Wang W., Yokoyama A., Liao S. et al. // Mater. Sci. Eng. C. 2008. V. 28. P. 1082.
  10. Vidhya M.S., Ravi G., Yuvakkumar R. et al. // Mater. Lett. 2020. V. 276. P. 128193.
  11. Wang C., Fu Q., Wen D. // Zeitschrift Fur Phys. Chemie. 2018. V. 232. P. 1647.
  12. Moreno-Castilla C., Maldonado-Hódar F.J. // Carbon N.Y. 2005. V. 43. P. 455.
  13. Lee K.S., Phiri I., Park C.W. et al. // Mater. Lett. 2020. V. 275. P. 128133.
  14. Kumar M., Chauhan H., Satpati B. et al. // Zeitschrift Fur Phys. Chemie. 2019. V. 233. P. 85.
  15. Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213.
  16. Yu Q., Dong T., Qiu R. et al. // Mater. Res. Bull. 2021. V. 138. P. 111211.
  17. Ershadi M., Javanbakht M., Mozaffari S.A. et al. // J. Alloys Compd. 2020. V. 818. P. 152912.
  18. Ampadu E.K., Kim J., Oh E. et al. // Mater. Lett. 2020. V. 277. P. 128323.
  19. Li J.L., Bai G.Z., Feng J.W. et al. // Carbon N.Y. 2005. V. 43. P. 2649.
  20. Soo L.T., Loh K.S., Mohamad A.B. et al. // J. Alloys Compd. 2016. V. 677. P. 112.
  21. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Appl. Surf. Sci. 2019. V. 488. P. 51.
  22. Kapteijn F., Moulijn J.A., Matzner S. et al. // Carbon N.Y. 1999. V. 37. P. 1143.
  23. Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465.
  24. Sun M., Zhang G., Liu H. et al. // Sci. China Mater. 2015. V. 58. P. 683.
  25. Li Y., Ai C., Deng S. et al. // Mater. Res. Bull. 2021. V. 134. P. 111094.
  26. Duraisamy V., Krishnan R., Kumar S.M.S. // Mater. Res. Bull. 12022. V. 49. P. 111729.
  27. Diamantopoulou Α., Glenis S., Zolnierkiwicz G. et al. // J. Appl. Phys. 2017. V. 121. P. 043906.
  28. Augustyniak-Jabłokow M.A., Strzelczyk R., Fedaruk R. // Carbon N.Y. 2020. V. 168. P. 665.
  29. Tadyszak K., Chybczyńska K., Ławniczak P. et al. // J. Magn. Magn. Mater. 2019. V. 492. P. 165656.
  30. Ćirić L., Sienkiewicz A., Djokić D.M. et al. // Phys. Status Solidi Basic Res. 2010. V. 247. P. 2958.
  31. Cirić L., Sienkiewicz A., Gaál R. et al. // Phys. Rev. B. 2012. V. 86. P. 195138.
  32. Kempiński M., Los S., Florczak P. et al. // Appl. Phys. Lett. 2018. V. 113. P. 084102.
  33. Ulyanov A., Stolbov D., Savilov S. // Zeitschrift Für Phys. Chemie. 2022. V. 236. P. 79.
  34. Ulyanov A.N., Maslakov K.I., Savilov S.V. et al. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. V. 287. P. 116119.
  35. Savilov S.V., Ulyanov A.N., Desyatov A.V. et al. // Solid State Sci. 2022. V. 132. P. 106996.
  36. Savilov S., Suslova E., Epishev V. et al. // Nanomaterials. 2021. V. 11. P. 352.
  37. Cao M., Du C., Guo H. et al. // Compos. Part A Appl. Sci. Manuf. 2018. V. 115. P. 331.
  38. Ulyanov A.N., Suslova E.V., Savilov S.V. // Mendeleev Commun. 2023. V. 33. P. 127.
  39. Kempiński M., Śliwińska-Bartkowiak M., Kempiński W. // Rev. Adv. Mater. Sci. 2007. V. 14. P. 163.
  40. Szirmai P., Márkus B.G., Dóra B. et al. // Phys. Rev. B. 2017. V. 96. P. 075133.
  41. Joly V.L.J., Takahara K., Takai K. et al. // Ibid. B. 2010. V. 81. P. 115408.
  42. Ramakrishna Matte H.S.S., Subrahmanyam K.S., Rao C.N.R. // Phys. Chem. C. 2009. V. 113. P. 9982.
  43. Yazyev O.V., Helm L. // Phys. Rev. B. 2007. V. 75. P. 125408.
  44. Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M. et al. // Phys. Status Solidi — Rapid Res. Lett. 2011. V. 5. P. 271.
  45. Пул Ч., Техника ЭПР-спектроскопии. М. Мир, 1970. 549 с.
  46. Ulyanov A.N., Quang H.D., Pismenova N.E. et al. // Solid State Commun. 2012. V. 152. P. 1556.
  47. Ulyanov A.N., Suslova E.V., Maslakov K.I. et al. // Funct. Mater. Lett. 2022. V. 15. P. 2251040.
  48. Singh C., Nikhil S., Jana A. et al. // Chem. Commun. 2016. V. 52. P. 12661.
  49. Lin T.T., Lai W.H., Lü Q.F. et al. // Electrochim. Acta. 2015. V. 178. P. 517.
  50. Huang Y.H., Liao C.S., Wang Z.M. et al. // Phys. Rev. B. 2002. V. 65. P. 184423.
  51. Wang B., Fielding A.J., Dryfe R.A.W. et al. // J. Phys. Chem. C. 2019. V. 123. P. 22556.
  52. Ulyanov A.N., Yang D.S., Mazur A.S. et al. J. Appl. Phys. 2011. V. 109. P. 123928.
  53. Ghosh A., Pinto J.W.M., Frota H.O. // J. Magn. Reson. 2013. V. 227. P. 87.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Fragment of graphene MGF before (a) and after (b, c) nitrogen doping; b — only graphite/quaternary N-radical, c — graphite/quaternary, pyrrole and pyridine types of nitrogen [21], d — fragment of CNT containing functional groups, including both edge and surface groups N, D, O and H [23].

Жүктеу (305KB)
3. Fig. 2. Initial experimental spectrum (derivative of the absorption line), ΔHpp and Δhpp are the width and intensity of the line from peak to peak (a); experimental spectrum of the absorption line, ΔH is the width of the line at half maximum (b).

Жүктеу (96KB)
4. Fig. 3. EPR spectra of oxidized carbon nanotubes: a — first derivative of the absorption spectrum (initial experimental spectrum); b — absorption spectrum obtained by integrating the initial spectrum; c — typical initial spectrum of non-oxidized CNT: no paramagnetic response.

Жүктеу (164KB)
5. Fig. 4. Covalently cross-linked CNT agglomerate synthesized using spark plasma sintering followed by treatment in nitric acid vapor (a); cylindrical oxidized CNTs (b).

Жүктеу (159KB)
6. Fig. 5. Temperature dependences of the intensity χ and line width (ΔH) (narrow – marked with index n and wide – b) of the K-CNT spectra (a); temperature dependences of the inverse intensity of the narrow 1/χn(T) and wide 1/χb(T) lines of the K-CNT (b). The inset shows the temperature dependence of the g-factor [35].

Жүктеу (192KB)
7. Fig. 6. EPR spectra of N-MHF obtained immediately after synthesis (a) and after 3.5 years of storage of samples (b).

Жүктеу (151KB)

© Russian Academy of Sciences, 2025