UNTANGLING THE VALLEY STRUCTURE OF STATES FOR INTRAVALLEY EXCHANGE ANISOTROPY IN LEAD CHALCOGENIDES QUANTUM DOTS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We put forward a generalized procedure which allows to restore the bulk-like electron and hole wave functions localized in certain valleys from the wave functions of quantum confined electron/hole states obtained in atomistic calculations of nanostructures. The procedure is applied to the lead chalcogenide quantum dots to accurately extract the intravalley velocity matrix elements and the constants of the effective intravalley Hamiltonian of the exchange interaction for the ground exciton state in PbS and PbSe quantum dots. Our results suggest that intravalley parameters in PbS quantum dots are much more anisotropic than the ones in PbSe. Renormalization of the velocity matrix elements, forbidden band gap, valley and exchange splittings of exciton and exciton binding energy are also calculated.

作者简介

I. Avdeev

Ioffe Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ivan.avdeev@mail.ioffe.ru
Saint Petersburg, Russia

M. Nestoklon

Ioffe Institute of the Russian Academy of Sciences

Email: ivan.avdeev@mail.ioffe.ru
Saint Petersburg, Russia

参考

  1. L. Efros and L. E. Brus, ACS Nano 15, 4, 6192 (2021).
  2. P. Tamarat, E. Prin, Y. Berezovska, A. Moskalenko, T. P. T. Nguyen, C. Xia, L. Hou, J.-Baptiste Trebbia, M. Zacharias, L. Pedesseau, C. Katan, M. I. Bodnarchuk, M. V. Kovalenko, J. Even, and B. Lounis, Nature Communications 14, 229 (2023).
  3. D. Avdeev, S. V. Goupalov, and M. O. Nestoklon, Phys. Rev. B 107, 035414 (2023).
  4. M. O. Nestoklon, K. Erik, D. R. Yakovlev, E. A. Zhukov, M. M. Glazov, M. A. Semina, E. L. Ivchenko, E. V. Kolobkova, M. S. Kuznetsova, and M. Bayer, Nano Lett. 23, 8218 (2023).
  5. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
  6. P. C. Sercel and K. J. Vahala, Phys. Rev. B 42, 3690 (1990).
  7. Zunger, Quantum Theory of Real Materials, Kluwer International Series in Engineering and Computer Science 348, 173 (1996).
  8. Benchamekh, M. O. Nestoklon, J.-M. Jancu, and P. Voisin, Semiconductor Modeling Techniques, Springer Series in Materials Scienc 159, 19 (2012).
  9. P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964).
  10. W. Kohn and L. J. Sham, Phys. Rev. A 140, A1133 (1965).
  11. B. Boykin, G. Klimeck, M. Friesen, S. N. Coppersmith, P. von Allmen, F. Oyafuso, and S. Lee, Phys. Rev. B 70, 165325 (2004).
  12. O. Nestoklon, L. E. Golub and E. L. Ivchenko, Phys. Rev. B 73, 235334 (2006).
  13. D. Avdeev, Phys. Rev. B 99, 195303 (2019).
  14. S. Liangfeng, J. J. Choi, D. Stachnik, A. C. Bartnik, B.-R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, Nature Nanotech. 7, 369 (2012).
  15. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, Science 324, 1542 (2009).
  16. A. Tisdale, K. J.Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X.-Y. Zhu, Science 328, 1543 (2010).
  17. N. Poddubny, M. O. Nestoklon, and S. V. Goupalov, Phys. Rev. B 86, 03532 (2012).
  18. D. Avdeev, A. N. Poddubny, S. V. Goupalov, and M. O. Nestoklon, Phys. Rev. B 96, 08531 (2017).
  19. D. Avdeev, M. O. Nestoklon, and S. V. Goupalov, Nano Lett. 20, 8897 (2020).
  20. Svane, N. E. Christensen, M. Cardona, A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys. Rev. B 81, 24512 (2010).
  21. C. Bartnik, A. L. Efros, W.-K. Koh, C. B. Murray, and F. W. Wise, Phys. Rev. B 82, 19531 (2010).
  22. S. V. Goupalov, Phys. Rev. B 84, 03730 (2011).
  23. S. V. Goupalov, Nanoscale 15, 1230 (2023).
  24. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, The Properties of the Thirty-Two Point Groups, M.I.T. Press, Cambridge (1963).
  25. J. O. Dimmock and G. B. Wright, Phys. Rev. A 135, 821 (1964).
  26. Kang and F. W.Wise, J. Opt. Soc. Am. B 14, 1632 (1997).
  27. S. V. Goupalov, E. L. Ivchenko and M. O. Nestoklon, Phys. Rev. B 106, 12530 (2022).
  28. P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).
  29. M. Abdel-Rehim, R. B. Morgan, D. A. Nicely, and W. Wilcox, SIAM J. Sci. Comp. 32, 129 (2010).
  30. O. Nestoklon, R. Benchamekh, and P. Voisin, J. Phys.: Condens. Matter 28, 30580 (2016).
  31. E. L. Ivchenko and M. O. Nestoklon, JETP 94, 644 (2002).
  32. D. Avdeev, M. O. Nestoklon, and S. V. Goupalov, Nano Lett. 22, 7751 (2022).
  33. S. V. Goupalov, P. Lavallard, G. Lamouche, and D. S. Citrin, Fiz. Tverd. Tela 45, 730 (2003).
  34. S. V. Gupalov, E. L. Ivchenko, and A. V. Kavokin, JETP 86, 388 (1998).
  35. S. V. Gupalov and E. L. Ivchenko, Phys. Sol. State 42, 2030 (2000).
  36. J. N. Zemel, J. D. Jensen and R. B. Schoolar, Phys. Rev. A 140, 330 (1965).
  37. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, ACS Nano 3, 3023 (2009).
  38. F. W. Wise, Acc. Chem. Res. 33, 773 (2000).
  39. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M. S. Eisen, and S. Berger, Nano Lett. 3, 857 (2003).
  40. G. L. Bir and G. E. Pikus, Symmetry and StrainInduced Effects in Semiconductors, Wiley (1974).
  41. Zee, Group theory in a nutshell for physicists, Princeton Univ. Press (2016).
  42. S. Matteson and R. S. Tsay, J. Amer. Stat. Association 112, 623 (2017).
  43. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific (1988).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024