Finite Time Effects in Single and Double Compton Scattering

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The process of Compton scattering by a free electron with subsequent reemission of one or two photons is considered in the assumption of finite interaction time. The corresponding cross sections are obtained in the framework of relativistic quantum electrodynamics using a modified form of fermion propagator with complex transmitted momentum. It is shown that finite time effects can be observable at sufficiently low energies of scattered photons. The proposed method also regularizes arising infrared divergence in the cross section of the double Compton effect. Possible experimental verification of considered theoretical approach is discussed.

作者简介

V. Dubrovich

Special Astrophysical Observatory, St. Petersburg Branch, Russian Academy of Sciences

Email: t.zalialiutdinov@spbu.ru
196140, St. Petersburg

T. Zalyalyutdinov

Russia Department of Physics, St. Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

编辑信件的主要联系方式.
Email: t.zalialiutdinov@spbu.ru
Petrodvorets, 198504, St. Petersburg, Russia; 188300, St. Petersburg

参考

  1. D. V. Karlovets, J. High Energy Phys. 2017 (3), 49 (2017).
  2. D. Karlovets, J. Phys.: Conf. Ser. 938, 012031 (2017).
  3. D. Krebs, D. A. Reis, and R. Santra, Phys. Rev. A 99, 022120 (2019).
  4. K. Nomoto and R. Fukuda, Progress Theor. Phys. 86, 269 (1991).
  5. F. Mandl and T. Skyrme, Proc. Roy. Soc. London, Ser. A Math. Phys. Sci. 215, 497 (1952).
  6. J. F. Dawson and Z. Fried, Phys. Rev. D 1, 3363 (1970).
  7. J. Sucher, Phys. Rev. 107, 1448 (1957).
  8. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Mod. Phys. Lett. A 6, 3679 (1991).
  9. G. L. Castro, J. L. M. Lucio, and J. Pestieau, Int. J. Mod. Phys. A 11, 563 (1996).
  10. M. Nowakowski and A. Pilaftsis, Z. Physik C Particles and Fields 60, 121 (1993).
  11. V. Kuksa, Adv. High Energy Phys. 2015, 490238 (2015).
  12. S. Weinberg, W. S, and T. de Campos, The Quantum Theory of Fields, Vol. 2: Modern Applications, Cambridge Univ. Press (1995).
  13. V. I. Kuksa, Phys. Particles Nuclei 45, 568 (2014).
  14. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).
  15. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).
  16. O. Klein and Y. Nishina, Z. Physik 52, 853 (1929).
  17. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, Mcgraw-Hill College (1964).
  18. J. M. Jauch and F. Rohrlich, The Relativistic Quantum Field Theory of Charged Particles with Spin One-half (Texts and Monographs in Physics), Springer, Berlin (1976).
  19. Л. П. Рапопорт, Б. А. Зон, Н. Л. Манаков, Теория многофотонных переходов в атомах, Атомиздат, Москва (1978).
  20. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Wiley-Interscience, New York (1965).
  21. E. Milotti, Atom. Data Nucl. Data Tables 70(2), 137 (1998).
  22. V. Berestetskii, E. Lifshits, and L. Pitaevskii, Quantum Electrodynamics, Oxford Butterworth-Heinemann (1982).
  23. T. Heinzl and A. Ilderton, arXiv:1307.0406.
  24. J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Advanced Book Program, Avalon Publ. (1998).
  25. R. Mertig, M. B¨ohm, and A. Denner, Comp. Phys.Commun. 64, 345 (1991).
  26. V. Shtabovenko, R. Mertig, and F. Orellana, Comp. Phys.Commun. 7, 432 (2016).
  27. L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
  28. A. Ravenni and J. Chluba, J. Cosmol. Astropart. Phys. 2020, 25 (2020).
  29. K. J. Mork, Phys. Rev. A 4, 917 (1971).
  30. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press (1965).
  31. V. Dubrovich and T. Zalialiutdinov, Physics 3, 1167 (2021).
  32. V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018 (2019).
  33. V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037 (2012).
  34. F. Low, Phys. Rev. 88, 53 (1952).
  35. E. L¨otstedt and U. D. Jentschura, Phys. Rev. A 80, 053419 (2009).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023