Easy-Plane Antiferromagnet in Tilted Field: Gap in Magnon Spectrum and Susceptibility

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Motivated by recent experimental data on dichloro-tetrakis thiourea-nickel (DTN) [Soldatov et al., Phys. Rev. B 101, 104410 (2020)], a model of antiferromagnet on a tetragonal lattice with single-ion easy-plane anisotropy in the tilted external magnetic field is considered. Using the smallness of the in-plane field component, we analytically address field dependence of the energy gap in “acoustic” magnon mode and transverse uniform magnetic susceptibility in the ordered phase. It is shown that the former is non-monotonic due to quantum fluctuations, which was indeed observed experimentally. The latter is essentially dependent on the “optical” magnon rate of decay on two magnons. At magnetic fields close to the one which corresponds to the center of the ordered phase, it leads to experimentally observed dynamical diamagnetism phenomenon.

Sobre autores

A. Shcherbakov

Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute

Email: nanoscienceisart@gmail.com
Leningrad oblast, 188300, Gatchina, Russia

O. Utesov

Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute; St. Petersburg State University; St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University

Autor responsável pela correspondência
Email: utiosov@gmail.com
Leningrad oblast, 188300, Gatchina, Russia; St. Petersburg, 198504 Russia; St. Petersburg, 190008 Russia

Bibliografia

  1. S. Sachdev, Quantum Phase Transitions, 2nd ed., Cambridge University Press (2011).
  2. F. Mila, European J. Phys. 21, 499 (2000).
  3. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nature Phys. 4, 198 (2008).
  4. A. Zheludev and T. Roscilde, Comptes Rendus Phys. 14, 740 (2013).
  5. A. Oosawa and H. Tanaka, Phys.Rev.B 65, 184437 (2002).
  6. R. Yu, L. Yin, N. S. Sullivan et al., Nature 489, 379 (2012).
  7. D. Huvonen, S. Zhao, M. Mansson, T. Yankova et al., Phys.Rev.B 85, 100410 (2012).
  8. M. P. Fisher, P.B. Weichman, G. Grinstein et al., Phys.Rev.B 40, 546 (1989).
  9. L. Pollet, N.V. Prokof'ev, B.V. Svistunov et al., Phys.Rev.Lett. 103, 140402 (2009).
  10. A. Paduan-Filho, X. Gratens, and N.F. Oliveira, Phys.Rev.B 69, 020405 (2004).
  11. S.A. Zvyagin, J. Wosnitza, C.D. Batista et al., Phys. Rev.B 85, 047205 (2007).
  12. A.V. Sizanov and A.V. Syromyatnikov, J. Phys.: Cond.Matt. 23, 146002 (2011).
  13. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  14. K.Y. Povarov, A. Mannig, G. Perren et al., Phys. Rev.B 96, 40414 (2017).
  15. A. Orlova, H. Mayaffre, S. Kramer et al., Phys.Rev. Lett. 121, 177202 (2018).
  16. V. S. Zapf, D. Zocco, B.R. Hansen et al., Phys.Rev. Lett. 96, 077204 (2006).
  17. E. Batyev and L. Braginsky, Sov.Phys. JETP 69, 781 (1984).
  18. E. Batyev, Sov.Phys. JETP 62, 173 (1985).
  19. L. Yin, J. S. Xia, V. S. Zapfet al., Phys.Rev.Lett. 101, 187205 (2008).
  20. S.A. Zvyagin, J. Wosnitza, A.K. Kolezhuk, et al., Phys.Rev.B 77, 092413 (2008).
  21. T.A. Soldatov, A. I. Smirnov, K.Y. Povarov et al., Phys.Rev.B 101, 104410 (2020).
  22. A. S. Sherbakov and O. I. Utesov, J.Magn.Magn. Mater 518, 167390 (2021).
  23. A. Lopez-Castro and M.R. Truter, J.Chem. Soc. 245, 1309 (1963).
  24. T. Holstein and H. Primakoff, Phys.Rev. 58, 1098 (1940).
  25. C. J. Hamer, O. Rojas, and J. Oitmaa, Phys.Rev. 81, 214424 (2010).
  26. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  27. V.N. Glazkov, JETP Lett. 112, 647 (2020).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023