A Quantum Algorithm for Solving the Travelling Salesman Problem by Quantum Phase Estimation and Quantum Search

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A quantum algorithm for solving the traveling salesman problem by the quantum phase estimation and quantum search method is considered. An approach is developed that was previously proposed for solving this problem. A quantum register is used to encode the eigenstates of a unitary operator whose phase determines the length of each possible route. The quantum phase estimation algorithm is used to estimate the length of a route. Then, to find the minimum route length, the measured values of length are encoded into the states of the second quantum register, and the search for the optimal route is carried out using a modified Grover algorithm. Numerical simulation of the proposed quantum algorithm is carried out using the Qiskit library for one and two iterations of the modified Grover algorithm.

Sobre autores

Ch. Tszyun'si

Rzhanov Institute of Semiconductor Physics, Siberian Branch,
Russian Academy of Sciences

Email: beterov@isp.nsc.ru
Novosibirsk, 630090 Russia

I. Beterov

Novosibirsk State University;Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences;Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences;Novosibirsk State Technical University

Autor responsável pela correspondência
Email: beterov@isp.nsc.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia;Novosibirsk, 630073 Russia

Bibliografia

  1. B. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu, Nature 550, 375 (2017).
  2. F. Arute, K. Arya, R. Babbush et al., Nature 574, 505 (2019).
  3. Y. Wu, W-S. Bao, S. Cao et al., Phys. Rev. Lett. 127, 180501 (2021).
  4. H.-S. Zhong, Y-H. Deng, J. Qin et al., Phys. Rev. Lett. 127, 180502 (2021).
  5. T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
  6. C. Noel, P. Niroula, D. Zhu et al., Nat. Phys. 18, 760 (2022).
  7. K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, arXiv:1805.10928 (2018).
  8. https://qiskit.org/textbook/ch-paper-implementations/tsp.html
  9. R. Botez, I.-A. Ivanciu, I. Marian, and V. Dobrota, Proc. Rom. Acad. - Math. Phys. Tech. Sci. Inf. Sci. 22(41), 91 (2021).
  10. J. Zhu, Y. Gao, H. Wang et al., arXiv:2212.02735 (2022).
  11. G. L. Long, Phys. Rev. A 64, 022307 (2001).
  12. Y. Chen, S. Wei, X. Gao et al., arXiv:1908.07943 (2019).
  13. M. Ghosh, N. Dey, D. Mitra, and A. Chakrabarti, IET Quantum Communication 3(1), 13 (2022), doi: 10.1049/qtc2.12023.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023