Hysteresis of Magnetization and Electric Polarization in Magnetic Nanostructures with Dzyaloshinskii–Moriya Interaction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the Dzyaloshinskii–Moriya interaction (DMI) on the formation of polar structures in nanoscale magnetoelectric films has been studied. The sequence of micromagnetic structures of different topology at magnetization and remagnetization of a film of limited size in a magnetic field oriented along the normal to the film surface is investigated. It is shown that the formation of polar structures is related to the existence of magnetic structures. Specific features of polar states in dependence of the DMI type and the interface symmetry is analyzed.

Sobre autores

Z. Gareeva

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences; Bashkir State University

Email: zukhragzv@yandex.ru
450075, Ufa, Russia; 450076, Ufa, Russia

N. Shul'ga

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences; Bashkir State University

Email: shulga@anrb.ru
450075, Ufa, Russia; 450076, Ufa, Russia

I. Sharafullin

Bashkir State University

Email: zukhragzv@yandex.ru
450076, Ufa, Russia

R. Doroshenko

Institute of Physics of Molecules and Crystals, Ufa Scientific Center, Russian Academy Sciences;

Email: zukhragzv@yandex.ru
450075, Ufa, Russia

A. Zvezdin

Prokhorov General Physics Institute of the Russian Academy of Sciences; Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zukhragzv@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. S. Manipatruni, D. N. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh and I. A. Young, Nature 565, 7737 (2019).
  2. G. Tian, W. Yang, D. Chen, G. Fan, Z. Hou, M. Alexe and X. Gao, Nat. Sci. Rev. 6, 684 (2019).
  3. M. Y. Liu, T. L Sun, X. L. Zhu, X. Q. Liu, H. Tian and X. M. Chen, J. Amer. Cer. Soc. 104, 6393 (2021).
  4. A. Fert, N. Reyren and V. Cros, Nat. Rev. Mater. 2, 7 (2017).
  5. L. Caretta, E. Rosenberg, F. Buttner, T. Fakhrul, P. Gargiani, M. Valvidares, Z. Chen, P. Reddy, D. A. Muller and C. Ross, Nat.commun. 11, 1 (2020).
  6. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
  7. C. O. Avci, E. Rosenberg, L. Caretta, F. Buttner, M. Mann, C. Marcus, D. Bono, C. A. Ross and G. Beach, Nat. Nanothech. 14, 561 (2019).
  8. D. H. Kim, M. Haruta, H. W. Ko, G. Go, H. J. Park, T. Nishimura, D. Y. Kim, T. Okuno and Y. Hirata, Nat. Mater. 18, 685 (2019).
  9. M. Heide, G. Bihlmayer, S. Blu¨gel, Phys. Rev. B 78, 140403 (2008).
  10. A. Soumyanarayanan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016).
  11. A. Samardak, A. Kolesnikov, M. Stebliy, L. Chebotkevich, A. Sadovnikov, S. Nikitov, A. Talapatra, J. Mohanty and A. Ognev, Appl. Phys. Lett. 112, 19 (2018).
  12. L. Wang, Q. Feng, Y. Kim, et al., Nat. Mater. 17, 1087 (2018).
  13. J. Lu, L. Si, Q. Zhang, C. Tian, et al., Adv. Mater. 33, 2102525 (2021).
  14. S. Muhlbauer, B. Binz, F. Jonietz, C. P eiderer, A. Rosch, A. Neubauer, R. Georgii and P. B¨onini, Science 323, 915 (2009).
  15. O. Cortes, M. Beg and V. Nehruji, New J. Phys. 20, 113015 (2018).
  16. I. Dzyaloshinsky, N. J. Phys. Chem. Sol. 4, 241 (1958).
  17. А. К. Звездин, А. П. Пятаков, УФН 179, 897 (2009).
  18. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
  19. M. J. Donahue, US Department of Commerce, National Institute of Standards and Technology, (1999).
  20. Z. V. Gareeva, N. V. Shulga and R. A. Doroshenko, Europ. Phys. J. Plus 137, 454 (2022).
  21. K. L. Meltov and K. Y. Guslienko, J. Magn. Magn. Mater. 242, 1015 (2002).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023