Jahn–Teller Ordering Dynamics in the Paraelectric BiMn7O12 Phase: 57Fe Probe Mössbauer Diagnostics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The electrical hyperfine interactions of the 57Fe probe nuclei stabilized in the structure of the BiMn7O12 manganite are studied by Mössbauer spectroscopy. Mössbauer spectra are measured in the para-electric temperature range, which includes the structural phase transitions I2/m ↔ Im3¯">3¯ (T1 ≈ 600 K) and Im ↔ I2/m (T2 ≈ 450 K). The calculation of the parameters of the electric field gradient tensor with allowance for the dipole contributions of Bi3+ cations in the range of the first phase transition allowed us to confirm a random orientation of the dipole moments pBi in the cubic phase of the manganite (Im3¯">3¯). Based on an analysis of the Mössbauer spectra recorded at T2 < T < T1, we considered various scenarios for the manifestation of the dynamic Jahn–Teller effect, which leads to the “melting” of the orbital order in the manganese sublattice, in terms of a two-level relaxation model.

Авторлар туралы

A. Sobolev

Moscow State University

Email: janglaz@bk.ru
199991, Moscow, Russia

V. Nitsenko

Moscow State University

Email: janglaz@bk.ru
Moscow, 119991 Russia

A. Belik

National Institute for Materials Science (NIMS)

Email: janglaz@bk.ru
Tsukuba 305-0044, Namiki 1-1, Ibaraki, Japan

Ya. Glazkova

Moscow State University

Email: janglaz@bk.ru
Moscow, 119991 Russia

M. Kondrat'eva

Shenzhen MSU-BIT University Shenzhen

Email: janglaz@bk.ru
Shenzhen 518115, Guangdong province, China

I. Presnyakov

Moscow State University;Shenzhen MSU-BIT University Shenzhen

Хат алмасуға жауапты Автор.
Email: janglaz@bk.ru
Moscow, 119991 Russia; Shenzhen 518115, Guangdong province, China

Әдебиет тізімі

  1. F. Mezzandri, G. Calestani, M. Calicchio et al., Phys. Rev. B 79, 100106 (2009).
  2. A. Gauzzi, G. Rousse, F. Mezzandri et al., J. Appl. Phys. 113, 043920 (2013).
  3. A. A. Belik, Y. Matsushita, Y. Kumagai et al., Inorg. Chem. 56, 12272 (2017).
  4. W. A. Slawinski, H. Okamoto, and H. Fjellwag, Acta Cryst. 73, 313 (2017).
  5. A. A. Belik, Y. Matsushita, and D. D. Khalyavin, Angew. Chem. Int. Ed. 56, 10423 (2017).
  6. D. D. Khalyavin, R. D. Johnson, F. Orlandi et al., Science 369, 680 (2020).
  7. D. I. Khomskii, Transition Metal Compounds, Cambridge Univ. Press, Cambridge (2014).
  8. C. В. Стрельцов, Д. И. Хомский, УФН 187, 1205 (2017).
  9. A. V. Sobolev, V. S.Rusakov, A. M. Gapochka et al., Phys. Rev. B 101, 224409 (2020).
  10. А. В. Соболев, А. В. Боков, В. И и др., ЖЭТФ 156, 972 (2019).
  11. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
  12. P. G. Radaelli, D. E. Cox, M. Marezio et al., Phys. Rev. B. 55, 3015 (1997).
  13. R. D. Johnson, D. D. Khalyavin, P. Manuel et al., Phys. Rev. B 93, 180403 (2016).
  14. R. D. Johnson, D. D. Khalyavin, P. Manuel et al., Phys. Rev. B 96, 054448 (2017).
  15. А. П. Пятаков, А. К. Звездин, УФН 182, 593 (2012).
  16. J. G. Park, M. D. Le, J. Jeong et al., J. Phys.: Condens. Matter 26, 433202 (2014).
  17. D. Khomskii, Physics 2, 20 (2009).
  18. E. Jo, S. Park, J. Lee et al., Sci. Rep. 7, 2178 (2017).
  19. M. Prinz-Zwick, T. Gimpel, K. Geirhos et al., Phys. Rev. B 105, 014301 (2022).
  20. A. V. Zalessky, A. A. Frolov, T. A. Khimich et al., Europhys. Lett. 50, 547 (2000).
  21. M. Pregelj, P. Jegliˇc, A. Zorko et al., Phys. Rev. B 87, 144408 (2013).
  22. A. M. L. Lopes, G. N. P. Oliveira, T. M. Mendonc¸a, Phys. Rev. B 84, 014434 (2011).
  23. A. A. Belik, Y. S. Glazkova, Y. Katsuya et al., J. Phys. Chem. C 120, 8278 (2016).
  24. A. Sobolev, V.Rusakov, A. Moskvin et al., J. Phys.: Condens. Matter 29, 275803 (2017).
  25. В. И. Ниценко, А. В. Соболев, А. А. Белик и др., ЖЭТФ 163, 698 (2023).
  26. F. Izumi, T. Ikeda, Mater. Sci. Forum 321-324, 198 (2000).
  27. M. E. Matsnev and V. S.Rusakov, AIP Conf. Proc. 1489, 178 (2012).
  28. Я. С. Глазкова, А. А. Белик, А. В. Соболев и др., Неорг. материалы 52, 546 (2016).
  29. Y. S. Glazkova, N. Terada, Y. Matsushita et al., Inorg. Chem. 54, 9081 (2015).
  30. D. P. E. Dickson and F. J. Berry, M¨ossbauer Spectroscopy, Cambridge Univ. Press, Cambridge (1986).
  31. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Univ. Press, Oxford (1977).
  32. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals, Springer, Berlin, Heidelberg (1998).
  33. S. Hussain, S. K. Hasanain, G. H. Ja ari et al., J. Amer. Ceram. Soc. 96, 3141 (2013).
  34. T. Lottermoser and D. Meier, Phys. Sci. Rev. 6, 20200032 (2021).
  35. Z. C. Xia, L. X. Xiao, C. H. Fang et al., J. Magn. Magn. Mater. 297, 1 (2006).
  36. M. D. Kaplan and B. G. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals, Springer, New York (1995).
  37. J. A. Alonso, M. J. Martinez-Lope, M. T. Casais et al., Inorg. Chem. 39, 917 (2000).
  38. M. Tachibana, T. Shimoyama, H. Kawaji et al., Phys. Rev. B 75, 144425 (2007).
  39. T. Chatterjee, Indian J. Phys. 80, 665 (2006).
  40. L. Mart'ın-Carr'on and A. de Andr'es, Eur. Phys. J. B 22, 11 (2001).
  41. A. Trokiner, S. Verkhovskii, A. Gerashenko et al., Phys. Rev. B 87, 125142 (2013).
  42. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer et al., Phys. Rev. B 90, 054424 (2014).
  43. J. Rodr'ıguez-Carvajal, M. Hennion, F. Moussa et al., Phys. Rev. B 57, R3189(R) (1998).
  44. F. Ham, J. Phys. Colloq. 35, C6-121 (1974).
  45. M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).
  46. M. Capone, D. Feinberg, and M. Grilli, AIP Conf. Proc. 554, 395 (2001).
  47. I. Bersuker, The Jahn-Teller E ect, Cambridge Univ. Press, Cambridge (2006).
  48. H. Okamoto, M. Karppinen, H. Yamauchi et al., Sol. St. Sci. 11, 1211 (2009).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023